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Abstract 

N6-Methyladenosine (m6A) is the most abundant, dynamic, and reversible epigenetic RNA modification that is found 
in coding and non-coding RNAs. Emerging studies have shown that m6A and its regulators affect multiple steps in 
RNA metabolism and play broad roles in various cancers. Worldwide, breast cancer is the most prevalent cancer in 
female. It is a very heterogeneous disease characterized by genetic and epigenetic variations in tumor cells. Increasing 
evidence has shown that the dysregulation of m6A-related effectors, as methyltransferases, demethylases, and m6A 
binding proteins, is pivotal in breast cancer pathogenesis. In this review, we have summarized the most up-to-date 
research on the biological functions of m6A modification in breast cancer and have discussed the potential clinical 
applications and future directions of m6A modification as a biomarker as well as a therapeutic target of breast cancer.
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Background
Breast cancer is the most common malignancy and lead-
ing cause of cancer-related death in women [1]. In 2018, 
up to 2.1 million women worldwide were diagnosed with 
breast cancer, occupying one out of four cancer cases 
among the female population [2]. At present, approxi-
mately 70–80% of non-metastatic breast cancer patients 
get cured, while advanced (metastatic) breast cancer 
patients do not attain remission using the currently avail-
able treatment regimens [1]. Breast cancer is known to be 
associated with molecular heterogeneity and exhibits a 
variety of histological features, prognostic patterns, and 
responses to treatment [3–5]. Thus, it is imperative to 
understand the underlying molecular mechanism of the 
development of breast cancer in detail.

Several studies have recently shown the importance of 
the intricate signaling at genetic, transcriptomic, and epi-
genetic levels that affects tumorigenesis and progression 

of breast cancer [6–8]. N6-Methyladenosine (m6A) is 
one of the most common internal epigenetic modifica-
tions found in RNA molecules [9]. After its discovery 
by Desrosiers in the 1970s [10], owing to the limitations 
in technology, research on m6A modification has slowly 
gained attention in the past couple of decades. Recently, 
with the advances in molecular biology and sequencing, 
the research on m6A modification has made remarkable 
progress [11–13]. To date, m6A modifications have been 
identified in almost every kind of RNA, including mRNA, 
tRNA, and non-coding RNA, and they are involved in 
multiple RNA processing and metabolism activities such 
as splicing, localization, export, translation, stabiliza-
tion, and decay [14–18]. Notably, m6A modification sites 
are evolutionally conserved (mammals, insects, plants, 
bacteria, yeast and some viruses) and occur within a 
consensus sequence DRACH (D = G, A, or U; R = G or 
A; H = A, C, or U) [11, 12]. m6A methylation is not ran-
domly distributed and is commonly detected in the cod-
ing sequences and 3′ untranslated regions (3′ UTRs), 
around the stop codons in mRNAs, or near the last exon 
in non-coding RNAs [19–21]. Deposition of m6A prefer-
entially in the 5′ UTR was also observed in a few cases 
[22, 23].
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It has become clear that the global abundance of m6A 
and expression levels of its regulators are frequently dys-
regulated in a variety of cancers, including breast cancer 
[24, 25]. The functions of m6A are critical for multiple 
biological processes such as tumor initiation, promotion, 
and progression in breast cancer. In this review, we first 
provide a comprehensive elucidation of m6A modifica-
tion, and then focus on the emerging pathophysiological 
roles and molecular mechanism of m6A modification in 
breast cancer. More importantly, we highlight the poten-
tial clinical applications and future directions of m6A 
modification as a biomarker as well as a therapeutic tar-
get of breast cancer.

Regulation of m6A modification
The m6A modification, as its name suggests, involves 
the transfer of a methyl group to the N-6 position of the 
adenosine in the nucleic acid [26]. Similar to DNA and 
histone methylation, m6A modification is a dynamic and 
reversible biological process that is regulated by methyl-
transferases (also called “writers”) and demethylases (also 

called “erasers”). In addition to writers and erasers, “read-
ers” are binding proteins that recognize the chemical sig-
natures important for the regulation of m6A modification 
(Fig. 1) [27, 28].

m6A writers
Writers of m6A methylation include the multicompo-
nent m6A methyltransferase complex (MTC) comprising 
methyltransferase-like 3 (METTL3), METTL14, Wilms 
tumor 1-associated protein (WTAP), and other regu-
latory proteins, including RNA-binding motif protein 
15 (RBM15), RBM15B, Vir-like m6A methyltransferase 
associated (VIRMA, also termed as KIAA1429 or Viri-
lizer), Cbl proto-oncogene like 1 (CBLL1, also termed 
as Hakai), and zinc finger CCCH-type containing 13 
(ZC3H13) [29]. In the MTC, METTL3 is the active cata-
lyzing enzyme, while METTL14 is responsible for main-
taining the catalytic activity of METTL3 and substrate 
recognition. The heterodimer formed by METTL3 and 
METTL14 is indispensable for m6A methylation [30, 
31]. WTAP helps in binding of this METTL3/METTL14 

Fig. 1  The molecular mechanism involved in m6A modification of consensus adenosine (A) bases. This is a dynamic and reversible epigenetic 
modification that is regulated by “writers” and “erasers.” m6A methylation is primarily catalyzed by the m6A methyltransferase complex comprising 
METTL3/METTL14/WTAP and other regulatory proteins (RBM15/15B, KIAA1429, Hakai, or ZC3H13). The erasers mainly include FTO, ALKBH5, ALKBH3, 
and ALKBH1. In addition to writers and erasers, “readers” are binding proteins that recognize m6A marks in the RNA. m6A modification can affect 
multiple steps in RNA processing, such as RNA splicing, export, translation, stabilization, and decay
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heterodimer to regulatory proteins and in localization 
of MTC in nuclear spots, thereby facilitating m6A meth-
ylation at selective group of transcripts and regions [32]. 
Moreover, certain m6A methyltransferases do not exert 
their function via the MTC. METTL16, METTL5, and 
zinc finger CCHC-type containing 4 (ZCCHC4) are RNA 
m6A methyltransferases that directly catalyze m6A modi-
fication in RNA molecules [33–35].

m6A erasers
Demethylases (“erasers”) are proteins that remove the 
m6A modification from RNA and include the fat mass 
and obesity-associated protein (FTO), α-ketoglutarate-
dependent dioxygenase alk B homolog 5 (ALKBH5), 
ALKBH3, and ALKBH1 [36]. All these molecules belong 
to the α-ketoglutarate-dependent dioxygenase fam-
ily of proteins and share a common mechanism for 
demethylation: m6A is oxidized to N6-hydroxymethy-
ladenosine (hm6A) that is converted to N6-formyladen-
osine (f6A) before finally reverting to adenosine (A), i.e., 
m6A-hm6A-f6A-A in a step-wise manner [37]. FTO was 
the first m6A demethylase identified (2011), and it can 
not only remove methyl group of m6A in RNA, but can 
also demethylate N6,2-O-dimethyladenosine (m6Am), 
which is predominantly located in the 5′ UTR [38–40]. 
ALKBH5, primarily localized to the nucleus, was the 
second m6A demethylase to be identified (2013). It can 
remove the m6A modification from nuclear RNA (mostly 
mRNA), thereby affecting mRNA export, splicing, and 
stability [41, 42].

m6A readers
Readers of m6A methylation constitute m6A-binding pro-
teins that recognize the modified site and induce a series 
of physiological functions [43]. These proteins can be 
divided into three categories depending on the mecha-
nism of m6A recognition: direct reader, m6A switch 
reader, and indirect reader [36]. Direct readers comprise 
the most-studied category and include YTH domain-
containing proteins and eukaryotic translation initiation 
factor (eIF) 3 [36]. The YTH domain is an RNA-bind-
ing domain that interacts with m6A via a “tryptophan 
cage” [44]. There are five proteins that form the YTH 
domain-containing (YTHDC) family of proteins, namely, 
YTHDC1, YTHDC2, and YTHDF1-3 [45]. YTHDC1 and 
the YTHDF family are primarily localized to the nucleus 
and cytoplasm, respectively, while YTHDC2 is found in 
both the nucleus and cytoplasm [14, 46, 47]. They iden-
tify specific m6A sites, and accordingly regulate export, 
degradation as well as translation of m6A-containing 
mRNAs [48]. Heterogeneous nuclear ribonucleoproteins 
(hnRNPs) including hnRNPG, hnRNPC, and hnRN-
PA2B1 and insulin-like growth factor 2 mRNA binding 

proteins (IGF2BPs) including IGF2BP1, IGF2BP2, and 
IGF2BP3 can function as m6A switch readers by remod-
eling specific RNA structure and consequently impact-
ing the binding mode of RNA and protein [36, 49, 50]. 
Fragile-X mental retardation protein (FMRP) has been 
recently identified to be an indirect reader since it can 
regulate m6A-modified mRNA by binding with the 
YTHDF proteins [51].

m6A sequencing technology
m6A-antibody immunoprecipitation (m6A-IP) and methyl-
ated RNA m6A immunoprecipitation sequencing (MeRIP, 
also called m6A-seq) were used to reveal the landscape of 
transcriptome-wide m6A sites in 2012 [11, 12]. However, 
these methods could only detect m6A sites within 100–
200 nucleotides long RNA fragments and could not iden-
tify m6A sites at base resolution [52]. Thus, to overcome 
low resolution, a series of new detection methods have 
been developed. For example, the RNA-antibody photo-
crosslinking and immunoprecipitation (CLIP) methods 
(PA-m6A-seq, miCLIP, and UV-CLIP) are antibody-based 
methods with better resolution [53]. m6A-REF-seq or 
MAZTER-seq are antibody-free m6A-seq methods that 
are based on the RNA m6A methylation-sensitive endori-
bonuclease MazF. It identifies unknown m6A sites that 
have been reported to be undetectable by CLIP [54, 55]. 
Another antibody-free method, termed DART-seq, is 
based on the fusion construct of m6A binding protein 
YTH and C-to-U editing enzyme APOBEC1. This tech-
nique requires low amounts of RNA and simple library 
preparation [56]. It is noteworthy that the methods men-
tioned above mostly detect m6A modification indirectly 
and may result in inaccuracies [57]. Recently, the Oxford 
nanopore technology is used to study transcriptome-wide 
m6A using a direct RNA sequencing protocol, which could 
prevent bias associated with amplification or reverse tran-
scription [58].

m6A modification in breast cancer
With the elucidation of mechanisms involved in m6A 
modification, current research has focused on the roles 
of m6A modification in various diseases. Although stud-
ies on the function of m6A in breast cancer are in their 
early stages, increasing evidence has shown that m6A is 
essential in many aspects of this tumor, including tumo-
rigenesis, metastasis, prognosis, and therapy resistance. 
Herein, we review the physiological effects of m6A modi-
fication in breast cancer (Table 1) and elaborate its future 
research trends and potential clinical applications.

Roles of m6A in breast cancer proliferation and apoptosis
Immortality and evasion of apoptosis are the two hall-
marks of cancer [59]. Numerous studies have shown the 
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dysregulation of writers/erasers/readers associated with 
m6A are responsible for tumorigenesis and progression 
in breast cancer (Fig. 2a). METTL3, the core component 

of MTC, enhances cell proliferation via a positive feed-
back loop of the HBXIP/let-7g/METTL3/HBXIP axis in 
breast cancer [60]. METTL3 also induces proliferation, 

Table 1  Roles of m6A regulators in breast cancer

m6A regulators Role in cancer Biological function Target/signaling axis Refs.

Writers

 METTL3 Oncogene Promote cell proliferation and growth HBXIP/let-7g/METTL3/HBXIP [60]

Promote proliferation and migration [62]

Promote cell proliferation, tumor growth; Inhibit cell apoptosis Bcl-2 [61]

 METTL14 Oncogene Promote proliferation and migration [62]

Promote cell migration and invasion Has-miR-146a-5p [76]

Promote cell proliferation and colony formation and inhibit cell 
apoptosis

LNC942-METTL14-CXCR4/CYP1B1 [71]

Tumor suppressor Suppress cell viability, colony formation and migratory abilities [64]

 KIAA1429 Oncogene Promote proliferation and migration CDK1 [65]

 Hakai Tumor suppressor Suppress cell proliferation and migration ERα [79]

Erasers

 FTO Oncogene Promote cell proliferation, colony formation and metastasis BNIP3 [67]

 ALKBH5 Oncogene Promote cell viability, colony formation and migratory abilities [64]

Increase the percentage of breast cancer stem cells NANOG [82]

Promote metastasis from breast to lungs NANOG and KLF4 [83]

Tumor suppressor Suppress proliferation and migration [76]

Readers

 YTHDF3 Oncogene Independent prognostic factor for overall survival [25]

 hnRNPC Oncogene Promote cell proliferation and tumor growth dsRNA-induced interferon response [72]

hnRNPA2/B1 Oncogene Promote cell proliferation, decrease apoptosis, and prolong the S 
phase of the cell cycle

STAT3 and ERK1/2 signaling pathway [73]

Tumor suppressor Suppress EMT and metastasis PFN2 [86]

 IGF2BP Oncogene Promote stemness of breast cancer cells Myc [84]

 eIF3m Oncogene Promote the cell proliferation, migration, invasion as well as sup-
press apoptosis in TNBC

[71]

 eIF3g Oncogene Promote lymph node metastasis hnRNPU, HSZFP36 and β-actin [87]

Fig. 2  The pathophysiological roles and molecular mechanism of m6A modification in breast cancer. a m6A and its regulators control RNA fate and 
metabolism to affect proliferation, apoptosis and cell cycle. b The mechanism of m6A modification involved in breast cancer migration, invasion and 
metastasis
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inhibits apoptosis, and accelerates tumor growth by tar-
geting Bcl-2 [61]. Overexpression of the METTL3/14 
m6A methylation complex results in malignant trans-
formation [62]. METTL14 interacts with and modifies 
lncRNA-942 by adding m6A to enhance the expression 
and stability of CYP1B1 and CXCR4, respectively, 
thereby increasing cell proliferation and colony formation 
and suppressing cell apoptosis [63]. Interestingly, a simi-
lar study showed that the overexpression of METTL14 
inhibits cell viability and colony formation in breast 
cancer [64]. KIAA1429 is an oncogene and it promotes 
breast cancer cell proliferation and colony formation by 
stabilizing the CDK1 mRNA (a cell cycle regulator) [65]. 
Similarly, Lewinska et al. [66] demonstrated that decrease 
in the m6A signature promotes cell cycle arrest and 
senescence, thereby exerting anticancer effects.

As an m6A eraser, FTO demethylates the 3′ UTR of 
the BNIP3 mRNA and induces its decay in an YTHDF2-
independent manner, resulting in breast cancer cell 
proliferation, colony formation, and metastasis [67]. Pol-
ymorphisms in FTO are associated with breast cancer, 
especially estrogen receptor (ER)-positive breast cancer 
[68, 69]. Estrogen stimulates breast cancer cell prolifera-
tion by upregulating FTO and activating PI3K/Akt sign-
aling [69]. Moreover, a recent study has demonstrated 
that FTO mediates the survival of metabolically adapt-
able triple-negative breast cancer (TNBC) cells in glu-
tamine-deficient microenvironments [70]. The function 
of ALKBH5 in breast cancer is controversial. Wu et  al. 
[64] have shown that silencing ALKBH5 leads to inhibi-
tion of breast cancer cell viability, colony formation, and 
migration. However, Fry et al. demonstrated the overex-
pression of ALKBH5 and METTL3/14 in immortalized 
human mammary epithelial cells. Depletion of ALKBH5 
increases cell proliferation and migration [62].

The expression of eIF3m, one of the 13 subunits of m6A 
reader eIF3, positively correlates with the development 
and progression of breast cancer. Downregulation of 
eIF3m inhibits breast cancer proliferation and increases 
the rate of apoptosis [71]. Wu et  al. have reported high 
levels of hnRNPC associated with breast cancer prolifera-
tion. Downregulation of hnRNPC promotes the forma-
tion of endogenous double-stranded RNA and induces 
immune response that results in antiproliferative activity 
[72]. hnRNPA2B1 also has a positive role in breast can-
cer. Knockdown of hnRNPA2B1 decreases breast cancer 
cell proliferation, increases apoptosis, and prolongs the S 
phase of cells by inhibiting STAT3/ERK1/2 signaling [73].

Roles of m6A in breast cancer migration, invasion 
and metastasis
Metastasis is a major cause of cancer-related deaths. 
Although the survival rate of breast cancer has improved 

immensely over the past decades, the therapeutic effect 
of metastatic breast cancer is still not optimistic [74]. 
Migration and invasion of tumor cells are key processes 
in cancer metastasis (Fig.  2b) [75]. METTL14 promotes 
the migration and invasion of breast cancer cells by 
directly regulating hsa-miR-146a-5p and m6A modifi-
cation [76]. Similarly, KIAA1429 has also been found 
to promote breast cancer cell migration and invasion 
[65]. ERs constitute the most active transcription fac-
tors involved in breast cancer. Inhibiting ERα activity 
is currently used as a strategy for treating patients with 
ER-positive breast cancer [77, 78]. Hakai is a coregula-
tor of ERα and suppresses breast cancer cell migration 
by competitively binding to ERα [79]. Although breast 
cancer stem cells (BCSCs) constitute a minor propor-
tion of breast cancer cells, accumulating evidence has 
demonstrated the vital role of BCSCs in tumor initia-
tion, progression, and metastasis [80, 81]. Hypoxia stim-
ulates ALKBH5 or ZNF217 that stabilize the NANOG 
and KLF4 mRNAs and induce the phenotype associated 
with BCSCs and lung metastasis [82, 83]. IGF2BP binds 
to lncRNA FGF13-AS1 and Myc to form a positive feed-
back loop to regulate breast cancer cell stemness [84]. 
Epithelial–mesenchymal transition (EMT) accelerates 
the progress of tumor metastasis [85]. Liu et al. [86] dem-
onstrated that hnRNPA2B1 inhibits EMT and metasta-
sis in breast cancer by directly binding to PFN2 mRNA 
and reducing its stability. Conversely, eIF3m promotes 
breast cancer cell migration and invasion by activating 
EMT [71]. eIF3g, another subunit of eIF3, interacts with 
hnRNPU, HSZFP36, and β-actin in the nucleus and pro-
motes the metastasis of breast cancer to the lymph nodes 
[87].

Roles of m6A in the clinicopathology and prognosis 
of breast cancer
A growing number of studies have confirmed the corre-
lation between m6A modification and clinical pathologi-
cal characteristics and prognosis of breast cancer (Fig. 3). 
Typically, breast cancer is classified into three major sub-
types based on molecular markers: ER or progesterone 
receptor (PR)-positive (luminal A and luminal B), human 
epidermal growth factor receptor 2 (HER2)-positive, and 
TNBC [3, 88]. Different subtypes of breast cancer are 
associated with distinct etiologies, response to treatment, 
and prognosis. Wu et  al. [64] reported that METTL3, 
METTL14, FTO, and ALKBH5 are upregulated and 
WTAP is downregulated in luminal breast cancer 
patients, while the expression level of FTO is significantly 
decreased in HER2-positive breast cancer. However, the 
study by Tan et al. demonstrated overexpression of FTO 
in hormone receptor-negative and HER2-positive breast 
cancer. A significant proportion of FTO-positive cells 
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have also been reported in P53-positive or histological 
grade 3 breast cancer [89]. Overexpression of eIF3m has 
been observed in TNBC but not in non-TNBC or nor-
mal breast tissues and it reduces overall survival (OS), 
relapse-free survival, and post-progression survival 
in breast cancer patients [71]. Using the data from The 
Cancer Genome Atlas-Breast Cancer cohort, Liu et  al. 
revealed that the overexpression of YTHDF1, YTHDF3, 
and KIAA1429 is predictive of poor prognosis. Espe-
cially, YTHDF3 is an independent prognostic factor of 
OS in breast cancer patients [25].

Zeng et  al. performed a case–control study based on 
Chinese population to determine the correlation between 
polymorphisms in FTO and risk associated with progno-
sis of breast cancer patients. Their results showed vari-
ants of FTO are concerned with varying susceptibility 
of breast cancer; however, they cannot predict survival 
outcomes in patients with this disease [90]. Meanwhile, 
it is acknowledged that obesity increases the risk of 
breast cancer substantially, but the molecular mecha-
nism involved remain to be understood [91]. As the name 

implies, FTO is intimately associated with obesity. Thus, 
the advent of FTO may well explain the relationship 
between obesity and breast cancer [69, 92]. In addition, 
epidemiological studies have found that reproductive his-
tory is linked to the development of breast cancer. The 
risk of breast cancer is significantly less in early preg-
nancy (before age 20), while the risk transiently increases 
after parturition [91, 93]. Peri et  al. [94] have demon-
strated that hnRPA2B1 is overexpressed in the mammary 
tissues of post-menopausal parous women, suggesting 
that m6A modification may contribute to the correlation 
between pregnancy and breast cancer.

Discussion
With the discovery of FTO as an m6A demethylase, 
research on m6A modification has become the hotspot 
of epigenetics. Recent reports have demonstrated that 
m6A-related regulators play essential and diverse bio-
logical functions in the development of various types of 
cancer, including breast cancer, glioblastoma, hepatocel-
lular carcinoma, acute myeloid leukemia, and cervical 

Fig. 3  The roles of m6A modification in the clinicopathology of breast cancer
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cancer [24, 95–97]. This review summarizes the recent 
advances in the understanding of the roles, mechanisms, 
and potential clinical applications of m6A in breast can-
cer. Notably, the specific mechanism for m6A modifica-
tion in breast cancer is complex and even inconsistent 
among studies. For instance, Wu et al. [64] showed that 
m6A methylation suppresses the growth and metasta-
sis of breast cancer, while Fry et al. [62] reported malig-
nant progression with increasing m6A methylation. This 
“double-edged sword” phenomenon is also reported in 
other tumors [98] and may be attributed to differences 
in the origin of tumor tissues, intratumoral heterogene-
ity, and ethnicity at the macro level. For example, the 
polymorphisms rs9939609 and rs1477196 in FTO are 
implicated in an increased risk of breast cancer among 
women excluding those from Iran [99]. Moreover, at the 
molecular level, there are two types of m6A sites in dif-
ferent cell lines: structural m6A sites and dynamic m6A 
sites. Dynamic m6A sites are cell-specific sites regulated 
by spatio-temporal regulators [100]. This category of 
m6A sites can make the gene play diverse roles in differ-
ent cells that may contribute to the phenomenon.

Studies have shown the importance of m6A regulatory 
enzymes as novel potential biomarkers for the early diag-
nosis and prognosis of breast cancer. Different enzymes 
involved in catalyzing m6A modification correlate with 
specific molecular subtypes of breast cancer that are clas-
sified based on the presence of certain biomarkers (ER, 
PR, and HER2). For example, eIF3m is overexpressed in 
TNBC, while it is expressed to the same extent in tumors 
and corresponding adjacent normal breast tissues in 
non-TNBC. The upregulation of eIF3m represents poor 
pathological differentiation, high degree of malignant 
transformation, and increased rates of lymph node and 
distant metastases in TNBC. Moreover, elevated expres-
sion of eIF3m implies poor survival outcomes for TNBC 
patients [71]. Therefore, eIF3m may be a reliable bio-
marker of TNBC. Of interest, we also found that both 
the m6A writer and eraser genes are aberrantly overex-
pressed and play oncogenic roles in breast cancer. Thus, 
global m6A signatures may be unreliable as diagnostic 
and prognostic biomarkers in patients with breast cancer. 
To that extent, the m6A profiles of specific transcripts or 
transcript loci could serve as better biomarkers. How-
ever, the techniques currently available for studying 
transcriptome-wide m6A modification are not precise 
enough [52]. This has resulted in the difficulty in fully 
understanding the correlation between m6A-modified 
RNAs and disease. Additionally, these methods are lim-
ited by the requirement of large amounts of RNA, expe-
rienced technical skills, and high cost, thereby limiting 
the feasibility of m6A-seq in large-scale screening [57]. 
Therefore, novel detection methods with high precision, 

reduced sample volume, and low cost are warranted. This 
will help develop m6A profiles/signatures of specific tran-
scripts or transcript loci as early diagnostic and prognos-
tic biomarkers for breast cancer. The improved methods 
of m6A-seq may enable the use of peripheral blood for 
screening of cancer in the future.

m6A may also serve as a novel therapeutic target in 
breast cancer. Targeting dysregulated m6A regulators 
represents an attractive strategy for cancer therapy. How-
ever, only a few studies have focused on the development 
of potent and specific drugs that target m6A regulators 
in breast cancer. MO-I-500 is a small-molecule inhibi-
tor of the m6A demethylase activity of FTO and inhibits 
the survival and/or colony formation of a SUM149 tri-
ple-negative inflammatory breast cancer cell line [70]. In 
addition to small-molecule compounds, PROTAC (pro-
teolysis targeting chimera)-based inhibitors can also be 
developed to treat breast cancer by selectively degrading 
dysregulated m6A regulators [101]. Systemic therapies, 
such as chemotherapy, radiotherapy, endocrine therapy, 
and targeted therapy, comprise the most important arm 
of breast cancer treatment [1]. Resistance to these thera-
pies is catastrophic and contributes to failed treatment 
and/or cancer recurrence [102, 103]. Recent studies have 
indicated that dysregulation of m6A regulators plays 
an important role in developing resistance to therapy 
in cancer [104, 105]. Klinge et  al. observed higher RNA 
and protein levels of hnRNPA2B1 in tamoxifen-resistant 
breast cancer cells. The upregulation of hnRNPA2B1 
alters the expression of multiple miRNAs and reduces the 
sensitivity of MCF-7 cells to tamoxifen [106], suggesting 
the importance of hnRNPA2B1 in resistance to endo-
crine therapy. Future research should focus on abrogating 
m6A-mediated resistance of breast cancer cells via differ-
ent treatment regimens.

Immunotherapy is emerging as a new treatment modal-
ity in breast cancer, especially metastatic breast cancer 
[107]. Owing to the unsatisfactory effect of immunother-
apy in the early stages of patients with breast cancer, breast 
cancer has previously been assumed to be unresponsive to 
the immunotherapy [108]. This could be attributed to the 
lacunae in the molecular mechanism in breast cancer that 
has resulted in the slow development of effective immu-
notherapy in such patients. Recent studies have shown the 
regulatory effect of m6A RNA modification on host immu-
nity and in enhancing anticancer immunotherapy. Deplet-
ing FTO promotes the degradation of downstream genes 
PD-1, CXCR4, and SOX10 in an m6A-dependent manner, 
thereby sensitizing patients with melanoma to anti-PD-1 
checkpoint blockade therapy [109]. Similarly, Han et  al. 
demonstrated a new mechanism for immune evasion: the 
m6A reader YTHDF1 binds to and promotes the transla-
tion of mRNAs encoding lysosomal proteases that result 
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in the reduction of cross-presentation of tumor antigens 
in dendritic cells. Silencing YTHDF1 inhibits immune eva-
sion and improves the efficacy of anti-PD-1 therapy [110]. 
Given the vital roles of m6A modification in breast cancer 
as well as the promising effect of immunotherapy in other 
tumors, combining m6A signatures and anticancer immu-
notherapy may serve as a breakthrough in breast cancer 
immunotherapy.

Currently, the roles and mechanisms involved in m6A 
modification in breast cancer remain to be elucidated and 
several issues need to be addressed in the future. First, 
high-throughput research on m6A modification should 
be performed to generate m6A methylation-centric 
networks in breast cancer. Second, although research-
ers have noted the potential of m6A as a diagnostic and 
prognostic marker for breast cancer, no studies that have 
focused on the sensitivity or specificity of this marker in 
large patient cohorts. Current m6A sequencing technolo-
gies are not sufficient to support large-scale screening. 
Thus, a novel sequencing technology is indispensable 
to study the role of m6A in breast cancer. Third, there is 
preliminary evidence for the potential of m6A as a thera-
peutic target for breast cancer. Studies have only focused 
on the molecular mechanisms involved at this stage and 
a few reports have focused on drug development and 
pre-clinical/clinical trials. Future experiments should 
examine the efficacy of m6A-targeted drugs alone or in 
combination with other treatments for breast cancer.

Conclusions
Taken together, we have discussed the dysregulation of 
m6A modification in breast cancer to help develop broad 
clinical applications in the prevention, treatment, and 
management of breast cancer. Detailed efforts to under-
stand the underlying mechanism of m6A modification in 
breast cancer, identify and develop diagnostic and prog-
nostic factors, and devise m6A-targeted therapy will help 
better treat patients with breast cancer in the future. This 
will also highlight the diverse (undiscovered) aspects of 
m6A modification and mark the beginning of the era of 
RNA epigenetics in cancer therapy.
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