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Abstract 

Background:  Although the study of calcium (Ca2+) is classically associated with excitable cells such as myocytes 
or neurons, the ubiquity of this essential element in all cellular processes has led to interest in other cell types. The 
importance of Ca2+ to apoptosis, cell signaling, and immune activation is of special import in cancer.

Main:  Here we review the current understanding of Ca2+ in each of these processes vital to the initiation, spread, and 
drug resistance of malignancies. We describe the involvement of Ca2+, and Ca2+ related proteins in cell cycle check-
points and Ca2+ dependent apoptosis and discuss their roles in cellular immortalization. The role of Ca2+ in inter-
cellular communication is also discussed in relevance to tumor-stromal communication, angiogenesis, and tumor 
microinvasion. The role that Ca2+ plays in immune surveillance and evasion is also addressed. Finally, we discuss the 
possibility of targeting Ca2+ singling to address the most pressing topics of cancer treatment: metastatic disease and 
drug resistance.

Conclusion:  This review discusses the current understanding of Ca2+ in cancer. By addressing Ca2+ facilitated angio-
genesis, immune evasion, metastasis, and drug resistance, we anticipate future avenues for development of Ca2+ as a 
nexus of therapy.
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Background
Investigational interest in calcium (Ca2+) began over 
100 years ago with the discovery of the requirement for 
Ca2+ in the contraction of rat cardiac muscle [1]. Due 
to this initial discovery, Ca2+ was thoroughly character-
ized in ventricular action potential and other muscle 
cell types before the same basic principles were applied 
to other excitatory cells types, such as neuronal cells [2]. 
The importance of active zone localized Ca2+ channels to 
neurotransmitter release further reinforced the impor-
tance of Ca2+ in proper cell function. Today, Ca2+ is 
known to be an essential element vital to the health and 

function of every cell type. Amplification in the magni-
tude and duration of Ca2+ changes in the cytosol could 
mean the difference between cellular migration and cell 
death [3, 4]. Similarly, increases in mitochondrial Ca2+ 
can signal either increased ATP synthesis or trigger cell 
death [5]. This fine control of cytosolic and organelle 
Ca2+ levels relies on an intricate symphony between a 
wide variety of Ca2+ channels pumps and exchangers [2]. 
In this review, we provide an overview of how disrup-
tions in Ca2+ regulation affect cancer progression, from 
its involvement in the immortalization of tumor cells, 
to its role in tumor-stromal interactions and epithelial–
mesenchymal transition, and finally to current research 
on Ca2+ in drug resistance.

Role of intracellular Ca2+ in cell cycle and death
Given the greater than ten-fold gradient between cyto-
solic (~ 100 nM) and extracellular (> 1 mM) Ca2+ levels, 
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opening of intramembrane Ca2+ channels leads to an 
immediate influx of Ca2+ [1]. Upon reaching the cyto-
plasm, Ca2+ often forms complexes with calmodulin to 
regulate a variety of kinases and cyclins, which regulate 
cell proliferation and apoptosis [6, 7]. Ca2+ regulates 
global cellular processes in such a way that any distur-
bances to Ca2+ homeostasis via alterations in expression 
or folding of Ca2+ channels and Ca2+ binding proteins 
can disrupt the cell-cycle [8]. As a result, dysregulation 
of intracellular Ca2+ levels can affect the ability of cells 
to regulate progression through the cell-cycle and lead to 
unchecked proliferation and tumorigenesis [9], two of the 
ten hallmarks of cancer (Fig. 1).

In the normal cell, progression from G1 to S-phase is 
accomplished via phosphorylation and subsequent inac-
tivation of the tumor suppressor, RetinoBlastoma pro-
tein 1 (RB1), as illustrated in Fig.  2 [10]. Endogenous 
RB1 inactivation or deletion removes this check on the 
cell cycle and allows affected cells to undergo unchecked 
DNA synthesis, leading to an accumulation of poten-
tially oncogenic DNA damage. Normally, cytosolic Ca2+ 
levels modulate the activity of guanosine exchange fac-
tor (GEF), a Ras stimulator, and GTPase activating 
protein (GAP), a Ras inhibitor. When activated, Ras stim-
ulates the proliferative mitogen-activated protein kinase 
(MAPK) pathway, which results in upregulation of cyc-
lin D1 in the cytoplasm, with ultimate phosphorylation 

of RB1 and release of the E2F transcription factor which 
initiates the cells transition into S-phase (Fig.  2). This 
connection between calcium and RB1 indicates that 
increased cytosolic Ca2+ levels can lead to constitutive 
activation of the MAPK pathway, causing removal of the 
G1-S transition check point. Ca2+ is also involved in sign-
aling entry into G1, as well as the transition from G2 to 
M, although the mechanisms of its involvement at these 
check points are not well understood [11].

Other cell cycle related families, like the Ca2+/calmod-
ulin-dependent protein kinases (CaMKs) are also known 
to facilitate proliferation and avoid death by promoting 
passage through the cell cycle and resisting apoptotic 
mechanisms [12]. CaMK levels have been shown to vary 
in lymphoma, ovarian cancer, and hepatocellular carci-
noma, among others [13–15].

Changes in Ca2+ conduction and levels can lead 
to apoptosis evasion and immortalization
In normal tissue, large, sustained changes to cytosolic 
Ca2+ can initiate cell death. Ca2+ flux from the endoplas-
mic reticulum (ER) to the mitochondria can also result 
in increased mitochondrial sensitivity to apoptotic stim-
uli. Chronic Ca2+ depletion is also known to cause ER 
stress and activation of stress activated protein kinases 

Fig. 1  Ca2+ and associated protein involvement in cellular prolifera-
tion. The affect of Ca2+ concentration on key cellular proteins are 
diagrammed

Fig. 2  Schematic of cell cycle, and the influence of calcium in G1/S 
transitioning via the MAPK pathway. Note that Ras, a protein under 
control of cytosolic calcium levels, also regulates the G0/G1 transition, 
and is important throughout G1 phase
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(SAPKs), which leads to apoptosis [11]. Finally, high cyto-
solic levels of Ca2+ can lead to cell death by activating 
calpain, a cysteine protease that specifically lyses BCL2, 
an anti-apoptotic regulatory protein [16, 17]. Alterations 
in Ca2+ levels can help cancer cells evade the first of these 
pathways by interrupting the transfer of Ca2+ from the 
ER to the mitochondria. Specifically, Ca2+-permeable 
Inositol 1,4,5-triphosphate receptor (IP3R) channels that 
facilitate this pro-apoptotic flux of Ca2+ from the ER 
could be prevented form activating. This process is aided 
by the anti-apoptotic capabilities of BCL-2, which dimin-
ishes Ca2+ flux by binding IP3Rs or decreasing Ca2+ lev-
els in the ER lumen [18, 19]. Certain cancer types are also 
known to regulate cytosolic Ca2+ to their advantage by 
bleeding off excess Ca2+ to create pro survival conditions. 
This is evident in breast cancer, where over-expression of 
plasma membrane calcium-ATPase 2 (PMCA2) allows 
for the release of Ca2+ in conditions of Ca2+ overload 
[20]. Potential therapeutics blocking BCL2 activation, 
promoting stability of the ER-mitochondrial linkage, or 
blocking the PMCA2 “emergency-release valve” could 
induce Ca2+-triggered apoptosis in tumor cells.

Tissue pressure, hypoxia and H+ can elicit Ca2+ changes
The cancer microenvironment consists of two interactive 
components: neoplastic cells and stroma [21]. The tumor 
stroma is a complex environment consisting of a non-
cellular extracellular matrix (ECM), and fibroblasts, epi-
thelial, endothelial, and immune cells [22]. This stroma is 
responsible for providing the nutrients, O2, and signaling 
molecules necessary to support tumor growth. In pan-
creatic adenocarcinoma, transient receptor potential cat-
ion channel 1 and 6 (TRPC1 and TRPC6) are activated by 
elevated pressure and hypoxia, respectively. This process 
also leads to Ca2+ entry and subsequent pro-angiogenic 
signaling cascade [23, 24]. In hepatocellular cancer cells, 
hypoxia also activates an ER Ca2+ sensor, stromal inter-
action molecule 1 (STIM1), which mediates activation of 
store-operated Ca2+ entry (SOCE) and leads to upregula-
tion of hypoxia-inducible factor 1 (HIF-1) expression [25, 
26]. HIF-1 then promotes release of growth factors (GFs) 
such as angiopoietin 2, placental GF, and stromal-derived 
factor 1 to promote angiogenesis [27]. In breast cancer, 
acid-sensing ion channel 1 (ASIC1) mediates Ca2+ influx. 
This pathway promotes tumor progression by forming 
reactive oxidative species and nuclear factor kB (NF-kB). 
Silencing ASIC1 has been shown to reduce tumor growth 
and metastasis in xenograft models [28]. Similarly, in 
pancreatic cancer cells, ASIC1 and ASIC3 mediate acid-
ity-induced Ca2+ influx to promote epithelial–mesenchy-
mal transition. Indeed, knockdown of ASIC1 and ASIC3 
has been confirmed to suppress liver and lung metastasis 
in xenograft models.

Ca2+‑dependent tumor‑stromal signaling drives 
angiogenesis
Communication between tumor and stromal cells has 
been shown to maintain growth and expansion through 
Ca2+-dependent signaling [29]. Vascular endothelial 
growth factor (VEGF) released by tumor cells triggers 
signal transduction that facilitates Ca2+-activated pro-
liferation in endothelial cells. Upon VEGF receptor 2 
activation, phosphoinositide phospholipase C (PLCγ) is 
phosphorylated, which in turn hydrolyzes phospholipid 
phosphatidylinositol (4,5)-bisphosphate (PIP2), result-
ing in accumulation of diacylglycerol (DAG) and inosi-
tol 1,4,5-trisphosphate (IP3). Accumulation of IP3 results 
in increase of intracellular Ca2+ and activation of the 
proliferative MAPK pathway [30, 31]. Proliferation in 
numerous subtypes of breast and gastrointestinal carci-
nomas, and glioblastomas is dependent upon this process 
[32–34]. Similarly, basic fibroblast growth factor (BFGF) 
activates the transient receptor potential cation channel 
subfamily V member 4 (TRPV4) in endothelial cells to 
facilitate Ca2+ influx, leading to endothelial cell prolifera-
tion, migration and angiogenesis [35, 36].

Ca2+‑dependent signaling may promote or hinder tumor 
escape of immune surveillance
Ca2+ dependent signaling is critical in the function-
ing of tumor-associated macrophages (TAMs), which 
have the ability to both sustain tumor growth and exert 
anti-tumor effects under certain conditions [37]. TAMs 
induce tumor progression through chemokine ligand 
18 (CCL18) production. In breast cancer, CCL18 binds 
to phosphatidylinositol transfer protein membrane-
associated 3 (PITPNM3) at the plasma membrane and 
induces phosphorylation of PLCγ1 and protein kinase 
C zeta (PKCζ). This cascade increases levels of inositol 
1,4,5-triphosphate 3-kinase isoform B (IP3KB), which 
are mediators in the Ca2+ signaling pathway. Indeed, 
the expression of CCL18 in blood or cancer stroma is 
associated with metastasis and reduced survival [38]. 
On the other hand, when T cell receptors (TCRs) on 
cytotoxic T lymphocytes binds to MHC-antigen recep-
tors on a malignant cell, the resultant immune synapse 
triggers Ca2+ influx in the immune cell, leading to lytic 
granule release and tumor killing. TCR stimulation can 
also evoke Ca2+ release from the ER via signaling cas-
cade involving Zeta-chain-associated protein kinase 70 
(ZAP-70), lymphocyte-specific protein tyrosine kinase 
(Lck), linker of activation of T cells (LAT), PLC-γ, and 
IP3 [39, 40]. Similarly, Ca2+ entry through Orai1 chan-
nels is required for release of lytic granules and subse-
quent tumor cell destruction by natural killer cells [41]. 
Lastly, recent experiments with chimeric antigen recep-
tor T (CAR T) cells, which have faster release-rates from 
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dying tumor cells than T cell receptor (TCR) T cells do, 
have implied there is no difference in intensity of Ca2+ 
flux between the two cell types; therefore both trigger the 

release of tumor-killing particles at the same threshold 
level of Ca2+ [42]. Interactions between various compo-
nents of stroma and tumor are shown in Fig. 3.

Fig. 3  Ca2+ signaling in tumor progression. The involvement of Ca2+ in every step of tumor development, metastasis, and current knowledge on 
Ca2+ facilitated drug resistance
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Developing areas in tumor stromal Ca2+‑dependent 
signaling
Recent findings on transient receptor potential cation 
channel subfamily A member 1 (TRPA1) and secreted 
protein acidic and rich in cysteine (SPARC) point to areas 
in need of further exploration. In prostate cancer stromal 
cells, TRPA1 has been shown to act as a mechanosensor 
and have the ability to bind to Triclosan, an antibacte-
rial agent [43]. This binding increases Ca2+ in stromal 
cells to trigger subsequent secretion of mitogenic factors, 
which lead to proliferation and/or migration of adjacent 
epithelial and endothelial cells to promote angiogenesis 
[21]. However, the specific stromal ligand activating this 
function has yet to be discovered. SPARC, a multifunc-
tional, matricellular Ca2+ binding protein, overexpressed 
in glioblastoma and thyroid, esophageal, hepatocellular, 
and pancreatic carcinomas, has been clinically corre-
lated with tumor progression [44–47]. SPARC contains 
an N-terminal low-affinity Ca2+-binding domain and 
a C-terminal high-affinity Ca2+-binding domain [48]. 
This protein plays a crucial role in cell rounding and 
focal adhesion disassembly during angiogenesis, tumor 
invasion, and metastasis [49]. While the prevalence 
of Ca2+ binding domains in this protein hint at a role 
in SPARC function, the exact pathway through which 
a Ca2+-SPARC complex elicits tumor advancement 
remains largely unknown [50]. The continued mystery 
surrounding the mechanism of Ca2+ associated TRPA1 
and SPARC function identifies the needs to continued 
investigation into Ca2+-dependent signaling in the tumor 
stroma.

Impact of Ca2+ signaling on the epithelial–mesenchymal 
transition
The first step in metastasis is the loss of cell–cell con-
nections. Focal adhesion kinase (FAK) is a ubiquitously 
expressed cytoplasmic tyrosine kinase that increases 
turnover of cell–cell contacts [51]. Overexpression of 
FAK is commonly associated with cancer, and seems to 
induce resistance to anoikis, death due to loss of attach-
ment to a basement membrane. Increased intracellular 
Ca2+ upregulates FAK at focal adhesions through phos-
phorylation by the calmodulin-dependent protein kinase 
II (CaMKII) [52]. Thus, aberrant signaling resulting in 
elevated intracellular Ca2+ levels can lead to an increase 
in FAK and a higher turnover rate for cell–cell attach-
ments [53]. Calcineurin, a protein regulated by Ca2+, 
recycles integrins in migrating cells and is another poten-
tial mediator of Ca2+-induced migration [54]. Except for 
this dysregulation of Ca2+, there are currently no other 
known differences between normal and malignant cells 
capable of migration [55].

Mechanical stress and intracellular Ca2+ levels affect 
cell–cell adhesion through TRP family proteins [56]. In 
addition to the above described role of TRP in cellular 
proliferation, TRP also plays a role in the epithelial–mes-
enchymal transition. High TRP levels are associated with 
the loss of cell adhesion, while TRP loss is associated with 
increased strength and number of focal adhesions [57]. 
Higher expression of TRP family member TRPV1 has 
been associated with increased migration in many differ-
ent cancer cell lines [58, 59]. TRPV2 has also been shown 
to be an important regulator of matrix metalloproteases 
MMP2 and MMP9, which are required for the extensive 
ECM remodeling necessary for successful metastasis 
[60]. ECM remodeling enzymes are substantially upreg-
ulated or specifically induced in many cancers [61]. In 
addition, many ECM proteins themselves are controlled 
by calcium levels in the cell. From the glycoprotein fibrin-
ogen which has multiple calcium binding sites critical 
for structure and function to fibrillin, which has several 
calcium binding epidermal growth factor domains to the 
thrombospondins which have multiple calcium binding 
repeats, calcium is a crucial player in normal physiology 
of the extracellular matrix. The overall effect of Ca2+ on 
ECM maintenance and remodeling remains an unan-
swered question, and an active area of research.

The epithelial–mesenchymal transition (EMT) is also 
associated with an increased capacity for invasion. This 
invasive capability has been connected to Ca2+ signaling 
in some cell types [62]. Davis et al. [63] have shown that 
when EMT is induced, there is an increase in cytosolic 
Ca2+ levels in human breast cancer cells. Chelating Ca2+ 
in this instance reduced epidermal growth factor levels 
and blocked the induction of EMT markers. Another 
important contributor to proliferative ability is the SOCE 
system, through which Ca2+ is pumped into the cytosol 
when ER Ca2+ is depleted. SOCE inhibitors have been 
shown to inhibit migration of cervical cancer and reduce 
the association of focal adhesion kinases at focal adhe-
sion sites [62].

Extracellular Ca2+ levels have also demonstrated an 
effect on the re-differentiation of epithelial breast can-
cer lines. Re-differentiation after metastasis, is impor-
tant in allowing cancer to survive in a novel niche after 
metastasis. Although physiological levels of Ca2+ inhibit 
proliferation and invasion, higher than normal extracel-
lular levels increase estrogen receptor activity, which has 
been associated with more aggressive and invasive breast 
cancers [64]. High extracellular Ca2+ levels ultimately 
increase the risk of bony metastasis in both breast and 
prostate cancer [65].
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Targeting Ca2+ as a treatment modality for metastatic 
disease
Tumor metastases cause the majority of cancer deaths. 
As such, development of preventative measures against 
and treatment of metastasis is an extremely active area 
of research. Metastatic transformation requires the loss 
of epithelial cell–cell connections and the transformation 
of primary tumor cells into a migratory mesenchymal 
cell. During this process, the cells must also degrade the 
ECM, cross basement membranes, and enter the circula-
tory system. As detailed above, Ca2+ signaling is involved 
in every step of this process [66–68]. Therapeutically, tar-
geting Ca2+ signaling to prevent metastasis is challeng-
ing, as any inhibition is likely to impact normal cells as 
well. Coupling Ca2+ to a cancer specific target has been 
shown to reduce normal cell death in a prostate cancer 
study [69]. For example, a drug combining Thapsigargin, 
a sarcolemma and ER Ca2+-ATPase (SERCA) inhibitor, 
with the targeting peptide for a prostate-specific anti-
gen was able to limit cell death to prostate cancer cells 
while sparing normal cells [70]. Despite such technologi-
cal advances, Ca2+-dependent migration mechanisms 
between normal and cancerous cells are similar enough 
that another mode of targeting Ca2+ should be consid-
ered [71]. As we have learned from “undruggable” pro-
teins like Ras and Myc, targeting downstream effectors 
of Ca2+-dependent signaling, such as proteins associated 
with cell–cell contacts and ECM degradation, may be a 
more practical approach [72].

Alterations in Ca2+ signaling in settings of drug resistance
In addition to being implicated in the described pro-
cesses of tumor progression, Ca2+ might also play a sig-
nificant role in facilitating drug resistance. In a recent 
study on breast cancer cell lines, increased mRNA lev-
els of plasmalemmal Ca2+ efflux pump (PMCA2), which 
removes Ca2+ from the cell, was correlated with poor 
survival [73]. Silencing of PMCA2 reduced cell prolifera-
tion and sensitized these cells to doxorubicin. Elevated 
PMCA2 is commonly found in the mammary glands of 
lactating mice and may thus indicate high cellular meta-
bolic activity, which is also frequently found in malignant 
cells. High levels of PMCA2 have also been confirmed in 
a variety of breast cancer cell lines. Another study con-
firmed the relationship between high PMCA2 expres-
sion and poor outcome, and demonstrated the ability of 
PMCA2 suppression to sensitize mammary epithelial 
cells to apoptosis [74].
P-glycoprotein or multidrug resistance protein 1 

(MDR1), an ATP-dependent efflux pump that expels 
cytotoxic drugs, has also been associated with chemo-
therapeutic resistance in breast cancer [75]. Induction of 
this protein has been associated with upregulation of the 

Ca2+-permeable channel TRPC5 in adriamycin-resistant 
breast cancer cell lines. In both human and mice mod-
els, TRPC5 expression is often higher in tumor cells 
and concentrated to vesicles. Indeed, in the adriamycin-
resistant breast cancer study, suppressing the activity 
of pro-oncotic TRPC5 reduced MDR1 induction and 
reversed adriamycin resistance both in vitro and in vivo 
[73]. TRPC5 suppression also appears to be essential to 
drug resistance in colorectal cancer, where suppression 
of TRPC5 expression reduced MDR1 induction, leading 
to 5-FU resistance via the canonical Wnt/β-catenin signal 
pathway.

A subtype of TRPC6 has also been implicated in 
another malignancy infamously recalcitrant to multi-
ple chemotherapeutic regimens, hepatocellular carci-
noma (HCC). A recent study has shown that a subtype 
of TRPC6, usually expressed at low levels in normal 
hepatocytes, mediates Ca2+ signaling and drug resistance 
in HCC. In this study, inhibition of Ca2+ signaling via 
TRPC6 inhibition resulted in restored sensitivity of HCC 
cells to various chemotherapeutic drugs and attenuation 
of the epithelial–mesenchymal transition [76]. These 
in  vitro studies were further corroborated in xenograft 
models where TRPC6 inhibition enhanced doxorubicin 
efficacy. The same study also identified the STAT3 path-
way as the mechanism of action for TRPC6/Ca2+ medi-
ated drug sensitivity. Namely, reduction of intracellular 
Ca2+ via TRPC6 inhibition activates STAT3, which then 
stimulates re-differentiation of cells and restores drug 
sensitivity [77]. T-type Ca2+ channels have also been 
associated with drug resistance in ovarian and other 
high-morbidity gynecological malignancies. Experiments 
on mice models of ovarian cancer have shown mibefradil 
inhibition of T-type Ca2+ channels to sensitize the dis-
ease to carboplatin. Furthermore, both pharmaceutical 
and genetic inhibition of Ca2+ channels led to apoptotic 
growth suppression in the ovarian cancer cells [78].

Drug resistance, especially the development of multi-
drug resistant disease, is of special concern in can-
cer therapy. The fact that Ca2+-mediated signaling can 
restore drug sensitivity in breast, colorectal, hepatocellu-
lar, and ovarian cancers suggests a possible role for Ca2+ 
channel blockers as an adjuvant therapy to standard-of-
care chemotherapies.

Conclusions
From tumor initiation to metastasis and drug resistance, 
Ca2+ signaling is intrinsic to all aspects of cancer biology 
(Fig. 3). Ironically, the very ubiquity of Ca2+ signaling in 
cancer makes this essential element difficult to explore 
in detail and target for drug development. While multi-
ple studies have shown the importance of Ca2+ signal-
ing at every key disease turning point (immortalization, 
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metastasis, and drug response), isolation of the specific 
effects remains elusive. This suggests development of 
therapies targeting Ca2+ should be constructed using 
experience from other “undruggable” targets like Ras and 
Myc. Instead of targeting Ca2+ itself, known Ca2+ associ-
ated proteins such as PMCA2, TRPC5, and MDR1 may 
serve as more discerning objectives.

Another emerging field of interest for Ca2+ signal-
ing is immunotherapy. Recent publications have sug-
gested that calcium signaling could be used to improve 
the efficiency of immunotherapy approaches by enhanc-
ing antigen presentation and in the adaptive immune 
response. In addition, the role of Ca2+ in killing by natu-
ral killer cells and cytotoxic T lymphocytes may also be 
exploited as high levels of intracellular Ca2+ are required 
for efficient cancer cell killing activity. Conversely, Ca2+ 
reduction has been showing to reduce growth of malig-
nant cells themselves. Thus, it is necessary to identify the 
specific Ca2+ channels utilized in granule exocytosis so 
that immune system’s ability to kill malignant cells can 
be enhanced without simultaneously promoting tumor 
growth. Although immunotherapy is a promising field 
through which Ca2+ signaling could augment treatment 
efficacy, the ubiquity of Ca2+ in normal metabolism and 
cellular function makes greater understanding of spe-
cific mechanisms in Ca2+ signaling necessary before such 
dreams become attainable.
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