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Abstract 

Background:  Sepsis is a common cause of death in intensive care units worldwide. Due to the high complexity of 
this immunological syndrome development of novel therapeutic strategies is urgent. Promising drug targets or bio-
markers may depict aquaporins (AQPs) as they regulate crucial key mechanisms of sepsis.

Main body:  Here we report on base of the current literature that several AQPs are involved in different physiological 
processes of sepsis. In immune system mainly AQPs 3, 5 and 9 seem to be important, as they regulate the migration 
of different immune cells. Several studies showed that AQP3 is essential for T cell function and macrophage migration 
and that AQP5 and AQP9 regulate neutrophil cell migration and impact sepsis survival. Additionally, to the function in 
immune system AQPs 1 and 5 play a role in sepsis induced lung injury and their downregulation after inflammatory 
stimuli impair lung injury. By contrast, AQP4 expression is up-regulated during brain inflammation and aggravates 
brain edema in sepsis. In kidney AQP2 expression is downregulated during sepsis and can cause renal failure. Some 
studies also suggest a role of AQP1 in cardiac function.

Conclusion:  In conclusion, AQPs are involved in many physiological dysfunctions in sepsis and their expressions are 
differently regulated. Additional research on the regulatory mechanisms of aquaporins may identify potential thera-
peutic targets.
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Background
Sepsis is one of the most common complications in 
Intensive Care Units in Germany and the United States 
[1, 2], and mortality remains unrestrainable high due to 
the extreme complexity of this immunological syndrome. 
Predictive biomarkers which characterize this immu-
nological syndrome properly are still missing; hence no 
individual therapy adapted on the immune status of the 
unique patient can be conducted. Aquaporins might be 
convenient biomarkers because they play an important 
role in inflammation and especially in sepsis as revealed 
by experimental and association studies [3–6].

Aquaporins (AQPs) are a group of to date 13 identified 
membrane proteins, which are essential for the regulation 

of water and salt in- and out flux of the cell. In addition, 
some AQPs facilitate the passive transport of glycerol 
and other small solutes such as urea and carbon dioxide 
through the cell membrane [7]. The water-selective AQPs 
are involved in many biological functions, including tran-
sepithelial fluid transport, cell migration, brain edema 
and neuroexcitation [7], whereas the aquaglyceroporins 
participate in cell proliferation, adipocyte metabolism 
and epidermal water retention. With this study we want 
to elucidate the possible role of AQPs in pathomecha-
nisms of sepsis on base of the current literature.

Approach of literature research and methodology
A literature search was undertaken using various online 
sources of English journal articles including Science-
Direct, PubMed and Web of Science. The keywords 
“aquaporin AND sepsis”, “aquaporins AND sepsis” and 
“AQP(xy) AND sepsis” were used to search all relevant 
articles dealing with the role of aquaporins in sepsis. In 
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total 51 studies were found. 10 articles were excluded 
because they either did not deal with sepsis or with aqua-
porins. One article was excluded because it was in Rus-
sian. The workflow of literature research can be found in 
Fig. 1. Due to the relative low number of articles dealing 
with real bacterial sepsis models, endotoxemia models 
using LPS injection were included in the analysis.

Aquaporin expression during inflammation
To completely understand the role of AQPs in sepsis, it is 
important to know how their expression is altered dur-
ing inflammation. It was demonstrated that in leucocytes 
of septic patients AQP3 expression is reduced 2.5 [8] fold 
and that simultaneously AQP1 expression is increased 
twofold [8]. In line with this our group showed that 
AQP1 expression is increased in the monocytic cell line 
THP-1 after lipopolysaccharide (LPS) administration, but 
AQP5 mRNA expression is reduced [9]. AQP6 expres-
sion in contrast might play a role in viral infections as it 
is decreased after viral infection and in turn can reduce 
the infectivity of Hazara virus [10]. Furthermore, AQP8 is 
reduced in hepatocytes after LPS administration [11]. In 
addition, patients with systemic inflammatory response 
syndrome (SIRS) show increased AQP9 expression in 
neutrophils compared to healthy controls [12]. Moreover, 
Gram-negative bacteria as P. aeruginosa induce increased 
expression, distribution and re-organization of AQP9 in 
macrophages with is accompanied by changes in mac-
rophage size and morphology. This in turn affects motil-
ity, migration and phagocytosis [13].

Aquaporins in cell migration of immune cells
The importance of aquaporins in cell migration has 
been demonstrated several times before [7, 14–17]. 

The proposed mechanism by which AQPs enhance cell 
migration is that they facilitate water influx at the cell’s 
leading edge. This causes membrane expansion and for-
mation of a concentration gradient of actin polymers 
which is followed by actin repolymerization to stabilize 
the membrane protrusion and lamellipodia formation 
[17]. As immune cell migration is an essential mechanism 
in sepsis, AQPs might depict key players in this process. 
Considerable AQPs for immune cell migration are AQP1, 
AQP3, AQP5, AQP7 and AQP9 as they are expressed in 
activated B and T lymphocytes (AQP1, 3, 5) [15] as well 
as immature dendritic cells (AQP3, 5, 7) [15] and neutro-
phils (AQP9) [15, 18, 19] (Fig. 2f ).

AQP5 seems to be of special interest, because in the 
past our group demonstrated that the C-allele of the 
functional AQP5 A(-1364)C promoter polymorphism 
(rs3759129) is associated with increased survival in 
severe sepsis [3] but decreased AQP5 expression [20]. 
Recently we showed that Aqp5-knockout (KO) mice show 
increased survival compared to wildtype mice after LPS 
induced endotoxemia. Furthermore, AQP5 overexpres-
sion caused increased migration of the T-lymphocytic 
cell line Jurkat. In addition, neutrophil granulocytes from 
C-allele carriers showed decreased migration compared 
to A-allele carriers. Therefore we concluded that the 
AQP5 genotype and AQP5 protein expression seem to 
alter neutrophil cell migration and may influence survival 
in sepsis by altering neutrophil cell migration. Hence 
AQP5 might be a key protein in inflammation and depict 
a novel target for developing sepsis therapeutics [21].

Similar to our study Zhu et  al. analyzed the effects of 
Aqp3 expression in a sepsis mouse model. They found 
that mouse resident peritoneal macrophages (mRPMs) 
express the aquaglyceroporin Aqp3 and to a low extent 
Aqp7 and Aqp9 in a plasma membrane pattern [22]. In 
contrast to our study, Aqp3-KO mice show significantly 
greater mortality than wildtype mice in a model of bac-
terial peritonitis. In addition, Aqp3-KO is accompanied 
by reduced migration of macrophages [22]. Besides to 
macrophage function, AQP3 seems also to be crucial 
for T-cell migration. It is suggested that AQP3-mediated 
H2O2 uptake is required for chemokine-dependent T-cell 
migration and a sufficient immune response [23].

AQP4 plays a role in the development of regulatory 
T-cells in the thymus. Aqp4-KO mice show decreased 
levels of CD4+ CD25+ regulatory T-cells. The decreased 
amount of regulatory T-cells causes increased microglial 
inflammatory response in a mouse model of Parkinson 
with Aqp4-KO mice [24].

Similar to the role of AQP5 and AQP3, AQP9 seems 
to be responsible for neutrophil migration, as Aqp9-KO 
mice show reduced neutrophil migration to fMLP [25]. 
In addition, Aqp7-KO mice have reduced migration of 
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Fig. 1  Workflow of literature research
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cutaneous dendritic cells. Beside its role in cell migration 
AQP7 seems to be responsible for antigen uptake as it 
could be demonstrated that Aqp7-deficient DCs showed 
a decreased cellular uptake of low-molecular-mass com-
pounds and high-molecular-mass substances [19].

Role of aquaporins in the inflammasome
The inflammasome is an important key modulator of the 
immune response and affects the immune response by 
the release of proinflammatory cytokines. It can be found 
in macrophages and neutrophil granulocytes and can rec-
ognize pathogens like bacteria. The inflammasome inter 
alia consists of NLR family pyrin domain containing 3 
(NLRP3) which is up-regulated in sepsis [26]. Activation 
of NLRP3 inflammasome causes interleukin 1 beta (IL-
1β) release. The IL-1β release depends on the pH of the 
cell and its regulation is caused by water influx mediated 

by aquaporins. AQP-mediated water movement in mac-
rophages therefore appears as the common element uni-
fying the variety of NLRP3 inflammasome activators [27].

Aquaporins in sepsis induced brain inflammation
One devastating complication of sepsis is septic encepha-
lopathy (SE) [28]. In this context, aquaporins might play 
an important role, as SE is associated with vasogenic brain 
edema [29, 30]. The inflammation of the brain occurring 
in SE is mediated by neutrophil infiltration and causes 
Aqp4 upregulation which aggravates brain edema [31, 32] 
(Fig.  2a). Upregulation of Aqp4 in brain after LPS expo-
sure can be attenuated by dexamethasone and this mech-
anism is mainly regulated by tumornecrosis factor alpha 
(TNF-α) [33]. However the use of corticosteroids like dex-
amethasone in sepsis is still discussed and its usage is only 
recommended under certain conditions [34].

Fig. 2  Purposed roles and expressions of aquaporins in sepsis: a AQP4 is expressed in brain and increased in sepsis, b AQP1 expression is increased 
in cardiac cells in sepsis, c AQP1, AQP8, AQP9 are expressed in bronchiolar epithelial cells and AQP5 can be found in alveolar epithelial cells; their 
expressions are reduced in sepsis, d AQP2 appears in the apical and subapical part of collecting duct principal cells and is reduced in sepsis, e AQP8 
is reduced in hepatocytes in sepsis, f AQP1 and AQP9 expressions are increased in neutrophils and lymphocytes in sepsis, whereas the expression of 
AQP3, AQP5 and AQP7 is reduced in lymphocytes and dendritic cells (Figure modified and adapted from [70–74, 77–79])
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In addition, AQP4 expression is upregulated in astro-
cytes during sepsis induced delirium (SID) and exosomes 
carrying AQP4 proteins from astrocytes to the peripheral 
blood may be utilized as biomarker for SID [35].

Aquaporins in kidney injury
Another common complication in sepsis is acute kidney 
injury (AKI), former called acute renal failure (ARF), 
which is frequently associated with polyuria and urine 
concentration defects and it increases the mortality rate 
in sepsis [36]. A cecal ligation and puncture (CLP) mouse 
model for sepsis showed that Aqp2 expression is down-
regulated through NF-κB pathway and may therefore 
cause acute renal failure during sepsis [37] (Fig. 2d). Pre-
treatment of rats with continuous erythropoietin recep-
tor activator (CERA) preserves Aqp2 expression in rat 
kidneys and protects against sepsis induced AKI [38].

The downregulation of Aqp2 in sepsis models is con-
firmed by animal models using LPS induced endotoxemia 
after short time exposure (6  h) [39–42], whereas after 
long time exposure (18  h) Aqp2 expression is increased 
in kidney [43]. Another study shows that Aqp2 is down-
regulated after LPS administration in an LPS sepsis 
model in rats [44] and that pretreatment but not post-
treatment with propofol prevents Aqp2 downregulation 
and protects renal function during endotoxemia and that 
this effect may be mediated by regulation of Intercellular 
Adhesion Molecule 1 (ICAM-1), TNF-α and mediators of 
apoptosis [44]. Another possibility for Aqp2 preservation 
after LPS exposure is treatment with α-lipoic acid [45].

Aquaporins in liver dysfunctions during sepsis
Liver has numerous functions in sepsis and is itself a 
target for sepsis induced injury [46]. For example septic 
shock and its toxins can cause hypoxic hepatitis, chol-
estasis due to altered bile metabolism or hepatocellular 
and acute liver injury [46]. In cholestasis AQP8 might 
play a role as it is downregulated after LPS stimulation 
in hepatocytes via TNF-α [11, 47]. The reduced AQP8 
expression in turn causes reduced water permeability 
of hepatocytes, which can result in reduced bile forma-
tion and aggravates cholestasis [48, 49] (Fig. 2e). Beside, 
AQP8 can modulate hepatocellular mitochondria func-
tion by modifying water transport [50]. A loss of mito-
chondria function in turn can cause kidney injury due to 
loss of cellular energy [51]. In an endotoxemia rat model 
hepatic mitochondrial Aqp8 expression is reduced [52]. 
Regulation of Aqp8 in endotoxemia and septic models 
by substances like tetramethylpyrazine or ethyl pyru-
vate could stabilize the mitochondria membrane poten-
tial, protect hepatocellular mitochondria from damage 
and might therefore be a therapeutic option in sepsis 
[51, 53].

Aquaporins in cardiac dysfunction
40–50% of patients with prolonged septic shock develop 
cardiac dysfunction [54] and newer studies indicate that 
cardiac dysfunction can occur in all stages of sepsis [55]. 
The underlying molecular mechanisms are not fully 
understood yet, but a notable cause is mitochondrial 
dysfunction which contributes to cardiac dysfunction by 
causing myocardial energy depletion [56]. Here AQP1 
might be important because Aqp1 knockout causes car-
diac hypertrophy in mice [57] (Fig. 2b). Another animal 
study tested the hypothesis if Aqp1 may play a role in 
cardiac dysfunction during sepsis. They found that Aqp1 
expression is increased after LPS exposure in cardiac tis-
sue and that this might influence cardiac function [58].

Aquaporins in acute lung injury
Another common complication in sepsis is acute lung 
injury that can cause acute respiratory distress syndrome 
(ARDS), which is associated with increased risk of in-
hospital mortality [59]. In lung mainly the aquaporins 
AQP1 and 5, 8 and to a lower extent AQP9 are expressed 
[60]. Here, Aqp1 is expressed in all vascular endothelial 
cells, Aqp5 in the alveolar type I cells and Aqp8 and Aqp9 
can be found in the bronchial epithelial cells in lung [61] 
(Fig. 2c). In 2016 in a small group of septic patients suf-
fering from diffuse alveolar damage is was demonstrated 

Table 1  Overview of  AQP regulation during  inflammation 
(↑ upregulation, ↓ downregulation, ? unknown regulation, 
= unaffected)

Aquaporin Tissue Regulation during inflam-
mation

References

AQP1 Immune 
cells

↑ In leukocytes and cell lines 
(THP-1)

[8, 9]

Heart ↑ In cardiac cells [58]

Lung ↓ In lung tissue after LPS [5, 6]

AQP2 Kidney ↓ In renal tissue after LPS [37]

AQP3 Immune 
cells

↓ In leukocytes of septic 
patients

[8]

AQP4 Brain ↑ In brain and anterior pitui-
tary gland

[31, 75]

AQP5 Lung ↓ In lung tissue after LPS [65]

Immune 
cells

↓ In THP-1 cells after LPS [9]

AQP7 Immune 
cells

? Mouse resident peritoneal 
macrophages

[76]

AQP8 Liver ↓ In hepatic cells [11]

Lung = In bronchial epithelial cells [61]

AQP9 Immune 
cells

↑ In neutrophils of SIRS 
patients

[12]

Immune 
cells

? Mouse resident peritoneal 
macrophages

[76]

Lung = In bronchial epithelial cells [61]



Page 5 of 7Rump and Adamzik ﻿Cell Biosci  (2018) 8:10 

that they have increased expression of AQP3 and AQP5 
in the alveolar septum compared to healthy controls [62]. 
Recently it was demonstrated that Aqp5 expression is 
decreased after sepsis induction with cecal ligation punc-
ture (CLP) in the lung of rats [63, 64]. This effect can be 
attenuated by emodin [65] and is regulated by the micro-
RNAs miR-96 and miR-330 [66]. In line with this Aqp1 
expression is decreased after LPS exposure in rat lungs 
[6, 67]. As a therapeutic option it was demonstrated 
that hydrogen rich saline and parenteral vitamin C can 
be protective in sepsis related lung injury and that it can 
attenuate the LPS induced reduction of Aqp1 and Aqp5 
expression [5, 68]. In addition, Aqp1 and Aqp5 expression 
in lung is reduced in lung after an inflammatory pancrea-
titis models, whereas Aqp8 and Aqp9 expression remains 
unaffected [61]. Here the traditional Chinese prescription 
Dai-Huang-Fu-Zi-Tang can upregulate Aqp1 and 5 and 
attenuate inflammation [61].

Conclusion
The regulatory mechanisms of aquaporins by LPS after 
endotoxemia and in sepsis seem to be tissue and aqua-
porin specific, as it can be seen in Table  1 and Fig.  2. 
As an example and it was demonstrated that AQP8 is 
downregulated in hepatic cells after LPS administration, 
though TNF-α pathway [11], while AQP9 expression 
remains unaffected [33, 69].

In summary, AQPs protein expressions seem to alter 
differential pathological mechanisms in sepsis and might 
be key proteins in inflammation. As a limitation of this 
review it has to be mentioned that several results were 
concluded from animal studies and that they potentially 
might to be fully adopted to human physiology. Eluci-
dating the differential regulatory mechanisms of AQP 
expression in human studies might be helpful for devel-
oping novel sepsis therapeutics.
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