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NF‑κB in inflammation and renal 
diseases
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Abstract 

Nuclear factor κB (NF-κB) is a family of inducible transcription factors that plays a vital role in different aspects of 
immune responses. NF-κB is normally sequestered in the cytoplasm as inactive complexes via physical association 
with inhibitory proteins termed IκBs. In response to immune and stress stimuli, NF-κB members become activated via 
two major signaling pathways, the canonical and noncanonical pathways, and move to the nucleus to exert transcrip‑
tional functions. NF-κB is vital for normal immune responses against infections, but deregulated NF-κB activation is a 
major cause of inflammatory diseases. Accumulated studies suggest the involvement of NF-κB in the pathogenesis of 
renal inflammation caused by infection, injury, or autoimmune factors. In this review, we discuss the current under‑
standing regarding the activation and function of NF-κB in different types of kidney diseases.
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Background
Nuclear factor κB (NF-κB) was initially discovered as a 
B cell nuclear protein binding to the κ enhancer of the 
immunoglobulin κ light chain gene [1, 2]. It subsequently 
became clear that NF-κB is a ubiquitously expressed 
transcription factor that mediates signal-induced expres-
sion of numerous genes involved in different biological 
processes, including immune responses, inflammation, 
cell growth and survival [3, 4]. Mammalian NF-κB rep-
resents a family of structurally related proteins, includ-
ing RelA (also called p65), RelB, c-Rel, p50 (also called 
NF-κB1), and p52 (also called NF-κB2), which share 
extensive homology in a region known as Rel homol-
ogy domain (Fig.  1). Through this domain, the different 
NF-κB members interact to form various homo- and 
hetero-dimers and bind to κB sequence elements present 
in the promoter or enhancer regions of target genes [4]. 
Each of the Rel proteins (RelA, RelB, c-Rel) contains a 
C-terminal transactivation domain, required for inducing 
target gene transcription. p50 and p52 lack a transactiva-
tion domain and functions to modulate the DNA-binding 

activity of NF-κB by forming Rel/p50 and Rel/p52 heter-
odimers. The homodimers of p50 and p52 are transcrip-
tional repressors that play an important role to prevent 
aberrant expression of NF-κB target genes, including 
those involved in inflammation [5–8]. However, the p50 
and p52 homodimers may also acquire transactivation 
function by associating with non-Rel coactivator proteins 
[9, 10].

NF-κB dimers are normally sequestered in the cyto-
plasm as inactive complexes via physical interaction with 
inhibitory proteins termed IκBs (Fig.  1). A hallmark of 
IκBs is the presence of an ankyrin-repeat domain, which 
is required for interacting with NF-κB and inhibiting the 
nuclear translocation and DNA binding activity of NF-κB 
dimers. The most extensively studied member of the IκB 
family is IκBα, which is vital for controlling the function 
of the prototypical NF-κB dimer, RelA/p50 [11]. Several 
other IκB molecules have been characterized, including 
IκBβ, IκBε, and several atypical IκB proteins [3, 4]. The 
IκB family also includes p105 and p100, precursor pro-
teins of NF-κB1 and NF-κB2, respectively [12]. These 
precursor proteins contain, in their C-terminal portion, 
an IκB-like structure and, thus, function as inhibitors of 
NF-κB, belonging to the IκB family (Fig.  1). Generation 
of mature NF-κB1 (p50) and NF-κB2 (p52) involves pro-
teasome-mediated degradation of the IκB-like sequence 
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of p105 and p100. Thus, this so-called processing of p105 
and p100 not only generate mature NF-κB1 and NF-κB2 
but also disrupts the IκB-like function of these NF-κB 
precursor proteins [12–14].

The in  vivo functions of NF-κB members have been 
extensively studied by gene-targeting approaches in mice. 
Despite their structural homology and DNA-binding 
similarities, the different NF-κB members have both 
overlapping and different functions in vivo [15]. Similarly, 
gene-targeting studies have revealed different functions 
of the IκB family members. These findings highlight the 
complexity of this transcription factor system.

NF‑κB signaling pathways
There are two major signaling pathways that mediate 
NF-κB activation: the canonical and noncanonical path-
ways [3, 13] (Fig.  2). The canonical pathway relies on a 
multi-subunit IκB kinase (IKK), composed of two cata-
lytic subunits, IKKα and IKKβ, and a regulatory subunit 
named NF-κB essential modulator (NEMO) or IKKγ [3, 

4]. IKK responds to various cellular stimuli, including 
microbial components, cytokines, growth factors and 
mitogens, and agents causing stress. Upon activation, 
IKK phosphorylates IκB and, thereby, triggers ubiquitin-
dependent IκBα degradation and release of the seques-
tered NF-κB members, including RelA/p50 and c-Rel/
p50 dimers. The major IκB member regulating canoni-
cal NF-κB pathway is IκBα, a protein characterized by its 
dynamic changes along with signal-induced NF-κB acti-
vation. Following its degradation triggered by IKK-medi-
ated phosphorylation, IκBα is rapidly resynthesized via 
NF-κB-mediated induction of its gene expression, thus 
providing a feedback mechanism to terminate NF-κB 
responses in a timely manner [16, 17].

Activation of IKK and canonical NF-κB signaling by 
most cellular stimuli requires TGFβ-activated kinase 
1 (TAK1), a member of the MAP kinase kinase kinase 
(MAP3K) family that directly phosphorylates the acti-
vation loop of IKKβ [18]. A hallmark of TAK1 and IKK 
activation is the involvement of lysine 63 (K63)-linked 

Fig. 1  The mammalian NF-κB and IκB families. The five members of the NF-κB family are schematically shown, with the major domains high‑
lighted and the alternative names indicated in parenthes. The rel-homology domain (RHD) mediates DNA-binding and dimerization functions, the 
transactivation domain (TD) is required for transcriptional activation of target genes, whereas the leucine zipper (LZ) motif is also involved in target 
gene transactivation. The IκB family includes the p50 precursor protein p105, the p52 precursor protein p100, IκBα, IκBβ, IκBε, and several atyipical 
IκB members that are not shown in the figure. A hallmark of IκB members if the presence of ankyrin repeats that are required for inhibition of NF-κB. 
The death domain (DD) of p105 and p100 is also important for their IκB-like functions. The PEST (proline, glutamine, serine, and threonine)-like 
sequence of IκBα and IκBβ mediates protein turnover. RHD rel-homology domain, TD transactivation domain, LZ leucine zipper, DD death domain, 
PEST proline, glutamine, serine, and threonine
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ubiquitination [19]. It is generally believed that cellu-
lar stimuli induce the conjugation of ubiquitin chains 
to signaling adaptors, which facilitate the recruitment 
of TAK1 and IKK. Both TAK1 and IKK contain a ubiq-
uitin-binding subunit, TAB 2 and NEMO, respectively, 
and the ubiquitin association not only facilitates assem-
bly of the TAK1/IKK signaling complex but may also 
directly contribute to the catalytic activation of these 
kinases [19]. Accumulating studies suggest that TAK1 
and NEMO are also conjugated with ubiquitin chains, 
which contributes to their activation [11, 19, 20]. In addi-
tion to K63-linked ubiquitin chains, linear ubiquitin 
chains (also called M1-linked ubiquitin chains) are also 
involved in the activation of IKK by certain inducers [21, 
22]. Linear ubiquitin chains are catalyzed by a ubiquitin 
assembly complex, LUBAC, composed of heme-oxidized 
IRP2 ubiquitin ligase-1 (HOIL-1, also called RBCK1), 

HOIL-1-interacting protein (HOIP, also called RNF31), 
and the adaptor protein SHANK-associated RH domain-
interacting protein (SHARPIN). LUBAC conjugates 
linear ubiquitin chains onto NEMO in TNF receptor 
(TNFR) signaling pathway, which promotes IKK activa-
tion and stabilization of the TNFR signaling complex [23, 
24]. NEMO also binds to linear ubiquitin chains, which 
is important for TNF-induced NF-κB activation [25]. 
Another signaling factor that is conjugated with linear 
ubiquitination in the TNFR pathway is the adaptor RIP1, 
which is important for NF-κB activation and inhibition of 
TNF-induced cell death [26].

Tight control of ubiquitination is crucial for maintain-
ing the homeostatic and signal-induced activation of 
NF-κB [27]. In particular, the canonical NF-κB signaling 
pathway is negatively regulated by ubiquitin-specific pro-
teases, or deubiquitinases, such as CYLD and A20 [27]. 

Fig. 2  Canonical and noncanonical NF-κB signaling pathways. The canonical NF-κB pathway responds to signals from diverse receptors, including 
pattern-recognition receptors (PRRs) present on cell surface or intracellular environment, TNF receptors (TNFRs), other cytokine receptors, as well 
as T cell receptor (TCR) and B cell receptor (BCR). The noncanonical NF-κB pathway is activated by a selective subset of TNFR superfamily members. 
Canonical NF-κB signaling involves activation of the trimeric IKK complex by the MAP3 K TAK1, IKK-mediated IκBα phosphorylation and subsequent 
degradation, and nuclear translocation of the prototypical NF-κB heterodimer RelA/p50. Noncanonical NF-κB signaling relies on NF-κB inducing 
kinase (NIK), which together with IKKα mediate phosphorylation and processing of p100, causing generation of p52 and nuclear translocation of 
p52/RelB complex. Compared with the pleotropic roles of canonical pathway, noncanonical NF-κB has more specific functions. PRR pattern-recogni‑
tion receptors, TNFR TNF receptor, TCR T cell receptor, BCR B cell receptor, NIK NF-κB inducing kinase
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CYLD deconjugates ubiquitin chains from a number 
of signaling molecules, including NEMO, TAK1, RIP1, 
TRAF2, and TRAF6 [28]. Gene-targeting studies have 
revealed a crucial role for CYLD in controlling the home-
ostatic NF-κB activation in lymphocytes, a function that 
is in turn required for maintaining normal functions of 
T and B cells and preventing autoimmunity and inflam-
mation [20, 28, 29]. CYLD specifically regulates non-deg-
radative types of ubiquitination by preferentially cleaving 
K63-linked and linear ubiquitin chains [30]. A20 func-
tions as a pivotal feedback regulator of signal-induced 
canonical NF-κB activation [27, 31]. Upon activation, 
NF-κB induces the expression of A20, and the accumu-
lated A20 inhibits activation of IKK and NF-κB. A unique 
feature of A20 is that it possesses both K63-specific 
DUB activity and K48-specific E3 ligase function [32]. 
This property allows A20 to mediate ubiquitin editing 
by cleaving K63-linked ubiquitin chains and conjugating 
K48-linked ubiquitin chains to substrates, such as RIP1 
and Ubc13, thereby both inhibiting the signaling func-
tion and triggering proteosomal degradation of the sub-
strates [32]. However, the function of A20 appears to be 
complex, since a recent study reveal that knockin mice 
expressing a DUB-inactive A20 mutant have no defect 
in NF-κB activation by TNF or LPS, suggesting a DUB-
independent function of A20 [33].

The noncanonical NF-κB pathway does not require the 
trimeric IKK complex or IκBα degradation but rather 
depends on the processing of the Nfkb2 gene product 
p100 [13, 14] (Fig. 2). P100 is the precursor protein of the 
NF-κB subunit p52, which contains a C-terminal portion 
that is homologous to IκBs (Fig. 1). Like IκBs, p100 binds 
to NF-κB members and functions as an NF-κB inhibitor 
[34]. The processing of p100 involves selective degrada-
tion of its C-terminal IκB-like sequence, which not only 
generates p52 but also leads to nuclear translocation of 
its sequestered NF-κB members, predominantly RelB 
[14]. A central signaling component of the noncanonical 
NF-κB pathway is NF-κB inducing kinase (NIK), which 
functions together with a downstream kinase, IKKα, 
to induce phosphorylation-dependent p100 processing 
[35, 36]. To date, the well-defined receptors that induce 
noncanonical NF-κB signaling are a subset of TNFR 
superfamily members, such as lymphotoxin beta recep-
tor (LTbR), B cell-activating factor belonging to the TNF 
family (BAFF, also called BLyS) receptor (BAFFR), CD40, 
receptor activator of nuclear factor-kappaB (RANK), and 
tumor necrosis factor-related weak inducer of apoptosis 
(TWEAK) [14].

In contrast to the rapid and transient nature of canoni-
cal NF-κB signaling, the noncanonical NF-κB signaling 
pathway is characteristically slow and persistent [13]. 
This is largely due to the unusual mechanism underlying 

NIK activation. The steady level of NIK is normally low 
due to its constant degradation by a TRAF3-dependent 
uibuiqination mechanism, and induction of noncanoni-
cal NF-κB signaling involves stabilization and accumu-
lation of NIK as a result of TRAF3 degradation [37]. 
This mechanism of NIK regulation also involves TRAF2 
and the E3 ubiquitin ligase c-IAP (c-IAP1 or c-IAP2). 
These components appear to form an E3 complex, in 
which TRAF3 functions as a substrate-binding subunit 
and TRAF2 functions as an adaptor recruiting c-IAP to 
TRAF3 and NIK [14]. The TRAF3-TRAF2-cIAP complex 
controls the steady state function of NIK and noncanoni-
cal NF-κB signaling. Signal-induced noncanonical NF-κB 
activation is also subject to regulation by negative regu-
lators. A deubiquitinase, Otud7b (also called Cezanne) 
inhibit signal-induced ubiquitination and degradation of 
TRAF3, thereby negatively regulating the induction of 
p100 processing by TNFR family members in B cells and 
fibroblasts [38]. In addition, NIK is negatively regulated 
by two homologous kinases, IKKα and TBK1 [39, 40]. 
These kinases phosphorylate NIK and promote degrada-
tion of NIK even when it is released from TRAF3.

NF‑κB in inflammation
Inflammation is a body’s protective response to infec-
tions and tissue damages, characterized by vasodilation 
and recruitment of leukocytes, plasma proteins and fluid 
to the affected tissue [41, 42]. Inflammation is normally 
beneficial to the host; however, deregulated inflamma-
tory responses can cause excessive or long-lasting tissue 
damages, leading to acute or chronic inflammatory dis-
eases. The development of an inflammation is typically 
initiated through the detection of pathogen-associated 
molecular patterns (PAMPs) or damage-associated 
molecular patterns (DAMPs) by pattern-recognition 
receptors (PRRs) on innate immune cells and epithe-
lial cells. PRRs represent several families of receptors, 
including toll-like receptors (TLRs), RIG-I like receptors 
(RLR), NOD-like receptors (NLRs), and C-type lectin like 
receptors (CLRs), which are expressed either on the sur-
face or intracellular environments of the host cells [43]. 
Upon ligation, PRRs initiate intracellular signaling events 
that lead to induction of proinflammatory cytokines, 
chemokines, and other inflammatory mediators.

Common to the signaling events elicited by the differ-
ent PRRs is activation of the canonical NF-κB pathway, 
which mediates transcriptional induction of various pro-
inflammatory cytokines, such as TNF-α, IL-1, and IL-6, 
as well as a number of chemokines [43]. These soluble 
factors bind to their specific receptors to induce impor-
tant inflammatory processes, including vasodilation and 
recruitment of monocytes and neutrophils to the site of 
inflammation [42]. NF-κB is also a pivotal mediator of 
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signal transduction stimulated by several major inflam-
matory cytokines, such as TNF-α and IL-1, thereby par-
ticipating in the effector phase of inflammation [44]. 
Indeed, studies based on animal models and human 
patients suggest the involvement of NF-κB in the patho-
genesis of various inflammatory diseases [44].

Inflammation also involves the adaptive immune com-
ponents, including specific subsets of T helper (Th) cells 
derived from activated CD4+ T cells [42]. Upon activa-
tion, naïve CD4+ T cells differentiate into different sub-
sets of effector T cells, including Th1, Th2, Th17, and T 
follicular (Tfh) cells, which secrete distinct cytokines and 
mediate different aspects of immune responses [45]. In 
addition, activated CD4+ T cells also produce a subset of 
immunosuppressive T cells, the inducible T regulatory 
(Treg) cells. The cytokines secreted by innate immune 
cells play a crucial role in regulating the differentiation 
of CD4+ T cells, providing a link between innate and 
adaptive immune responses. Th1 and Th17 cells are con-
sidered proinflammatory T cells because of their associa-
tion with autoimmune and inflammatory conditions [42]. 
Th1 cells are characterized by secretion of interferon 
gamma (IFNγ), a cytokine with pivotal functions in cellu-
lar immunity and inflammatory responses. The signature 
cytokine of Th17 cells is IL-17, which is linked with many 
autoimmune and inflammatory diseases [46, 47]. Nota-
bly, NF-κB is required for production of both Th1 and 
Th17 cells [48]. NF-κB functions in innate immune cells 
to induce the production of IL-12 and IL-23, which in 
turn promote the differentiation of CD4+ T cells to Th1 
and Th17 cells, respectively [49]. Canonical NF-κB also 
has a T cell-intrinsic role in mediating the generation of 
Th1 and Th17 cells [50–52]. The NF-κB members RelA 
and c-Rel are required for TCR-stimulated expression 
of Rorc, a gene encoding the Th17-lineage specific tran-
scription factors RORγT and RORγ [51, 52]. NF-κB not 
only promotes induction of Th17 cells but also serves as 
a major transcription factor that is actived by IL-17 and 
mediates the inflammatory functions of Th17 cells [53, 
54].

Recent studies suggest that the noncanonical NF-κB 
pathway also plays a role in regulating inflammatory 
responses. Although noncanonical NF-κB pathway is 
dispensable for CD4+ T cell differentiation, this path-
way is required for the inflammatory effector function 
of Th17 cells [55]. After migrating to the inflammatory 
microenvironment, Th17 cells acquire pathological effec-
tor functions by expressing specific cytokines including 
GM-CSF [56, 57]. Genetic evidence suggests a crucial 
role for the noncanonical NF-κB pathway in mediating 
induction of GM-CSF in Th17 cells [55]. The noncanoni-
cal NF-κB member p52 directly binds to the κB enhancer 
element in the GM-CSF gene promoter and recruits the 

canonical NF-κB member c-Rel to this promoter. Thus, 
p52 and c-Rel synergize in the transcriptional activation 
of the GM-CSF gene, which promotes inflammation in 
an animal model of neuroinflammatory disease [55]. In 
summary, both the canonical and noncanonical NF-κB 
pathways are linked to inflammation, although they act 
with different mechanisms.

Inflammation and kidney diseases
Immune and inflammatory factors play an important role 
in the pathogenesis of kidney diseases [58, 59]. Innate 
immune cells, such as macrophages and dendritic cells, 
are thought to have an important role in mediating renal 
inflammation and injury [59]. During an in infection, 
these innate immune cells detect microbial products via 
PRRs, such as TLRs, and are stimulated to secrete pro-
inflammatory cytokines and chemokines [59, 60]. In 
addition to recognizing PAMPs, the TLRs also respond 
to DAMPs, which are endogenous ligands generated 
by tissue damage. DAMPs serve as an important trig-
ger for innate immune cell activation and inflammation 
in the kidney. In addition to innate immune cells, renal 
cells, such as mesangial and tubular epithelial cells, also 
express TLRs and produce proinflammatory cytokines 
and chemokines, contributing to kidney injury [60, 61].

In addition to infections and injuries, autoimmune dis-
orders represent a major cause of renal inflammation and 
injury. Lupus nephritis is caused by the autoimmunity 
systemic lupus erythematosus (SLE; often called lupus) 
[62, 63]. The pathogenesis of SLE and lupus nephritis 
involves both adaptive and innate immune cells, includ-
ing T cells, B cells, dendritic cells and macrophages, 
as well as renal cells [59, 62, 64, 65]. Lupus nephritis is 
characterized by the presence of various autoantibod-
ies that form immune complexes and deposit to kidney 
glomeruli [63]. The immune complexes induce inflamma-
tory responses through a number of mechanisms, such as 
activation of complement and Fc receptors and recruit-
ment of inflammatory cells [66, 67]. Immune complexes 
also serve as an endogenous trigger of TLRs on renal cells 
to induce expression of proinflammatory cytokines [60]. 
IgA nephropathy, a leading cause of primary glomerulo-
nephritis, is also considered an autoimmune disease [68]. 
Patients with IgA nephropathy produce high levels of 
aberrantly glycosylated IgA and anti-glycan autoantibod-
ies, leading to the formation of IgA-immune complexes 
deposited to the kidney glomeruli and progressive induc-
tion of kidney injury [68].

NF‑κB activation by pathophysiological triggers in renal 
cells
NF-κB is activated by different pathophysiological trig-
gers in renal cells and has been linked to experimental 
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and human kidney diseases [69–71]. Microbial compo-
nents, such as LPS of Gram-negative bacteria, are strong 
stimuli of NF-κB in kidney resident cells and infiltrating 
immune cells [69]. Outer membrane proteins of lepto-
spira, pathogens associated with renal diseases, also 
activate NF-κB and act through stimulation of TLR2 
[72]. Cytokines and other pathological factors pro-
duced during renal ischaemia–reperfusion injury are 
also strong stimulators of NF-κB. In particular, ischae-
mia–reperfusion induces the production of TNF-α in an 
NF-κB-dependent manner, and TNF-α in turn binds to 
its receptor to stimulate NF-κB activation, thereby pro-
viding a positive feedback mechanism of NF-κB regula-
tion [73]. This signaling loop plays an important role in 
the pathogenesis of renal ischemia–reperfusion injury. 
Angiotensin II, a peptide hormone overproduced during 
renal damage, has been shown to activate NF-κB [74, 75]. 
Angiotensin is a physiological regulator of vasoconstric-
tion and blood pressure; however, deregulated angio-
tensin is involved in inflammation and the pathogenesis 
of hypertension, atherosclerosis, and cardiac and renal 
injuries [76]. NF-κB activation plays an important role 
in angiotensin II-induced expression of chemokines and 
inflammatory responses in renal injury [77–79].

Some other pathological agents associated with kidney 
diseases are also inducers of NF-κB. For example, it has 
been shown that aberrantly glycosylated IgA, pathologi-
cal agents of IgA nephropathy, activates NF-κB in mesan-
gial cells by modulating proteasome function [80, 81]. 
Another potential pathological trigger of NF-κB activa-
tion is hyperhomocysteinemia [82], a condition charac-
terized by abnormal elevation of plasma homocysteine 
levels and seen in chronic disorders including experimen-
tal kidney diseases [83, 84]. In a rat model, diet-induced 
hyperhomocysteinemia was shown to induce IκBα phos-
phorylation and canonical NF-κB activation in kidney, 
which is responsible for the induction of the inflamma-
tory mediator iNOS [82]. In vitro studies also reveal that 
homocysteine activates NF-κB, which contributes to 
chemokine induction in macrophages and smooth mus-
cle cells [85, 86].

As seen in other tissues, NF-κB activation in kidney 
cells is negatively regulated by different factors. Nephrin, 
an Ig superfamily member located at the slit diaphragm 
of glomerular podocytes, serves as a negative regulator 
of NF-κB signaling in podocytes [87]. Although precisely 
how nephrin inhibits NF-κB activation is incompletely 
understood, it appears to involve inhibition of the atypi-
cal PKC aPKCζ. Uncontrolled NF-κB activation in kid-
ney podocytes appears to contribute to the glomerular 
injury [87]. Another negative regulator of NF-κB in 
kidney cells is the deubiquitinase Cezanne (also called 
Otud7b), which regulates the inflammatory responses in 

glomerular endothelial cells by controlling the ubiquitina-
tion and function of TRAF6 [88]. Cezanne is a DUB that 
shares homology with A20 in the catalytic domain [89]. 
Cezanne negatively regulates canonical or noncanonical 
NF-κB pathways, depending on the cell types. Cezanne 
expression is induced in multiple cell types of murine 
kidneys exposed to ischemia–reperfusion. Genetic abla-
tion of Cezanne in mice enhances renal inflammation 
and injury induced by ischemia–reperfusion [88]. Loss 
of Cezanne increased the induction of VCAM-1 and 
E-Selection as well as RelA phosphorylation [88]. Since 
the expression of these cell adhesion molecules is also 
regulated by noncanonical NF-κB, which is negatively 
controlled by Cezanne, it will be interesting to exam-
ine whether noncanonical NF-κB is also involved in the 
regulation of renal inflammation mediated by Cezanne. 
The proinflammatory function of NF-κB in renal cells is 
also subject to regulation by the p50/p50 homodimer, a 
κB-specific repressor that is induced during experimental 
renal injury and serves as a feedback repressor of NF-κB-
mediated inflammatory gene induction [90, 91].

NF‑κB in kidney injury
Acute kidney injury (AKI) is a frequently seen kidney 
disease associated with a high rate of morbidity and 
mortality, and survivors of AKI faces a long-term risk 
for developing chronic kidney disease [92, 93]. AKI is 
often caused by ischemia–reperfusion, during which 
kidney is in a condition of hypoxia and low renal blood 
flow. Inflammation caused by AKI is an important fac-
tor that exacerbates kidney injury, and control of inflam-
mation has proved to be effective for minimizing kidney 
injury and facilitating recovery [94]. NF-κB is activated 
along with kidney injury induction by ischemia–reperfu-
sion and believed to serve as an important mediator of 
inflammation [71]. It has been shown that NF-κB inhibi-
tors attenuate the induction of renal inflammation and 
injury in animal models [95, 96]. Inhibitor studies also 
suggest a role for NF-κB in regulating aldosterone/salt-
induced renal injury [97]. A more recent study tested the 
effect of a small interfering RNA (siRNA) for IKKβ on 
renal injury. In a rat kidney injury model, administration 
of IKKβ siRNA via renal artery injection inhibits IKKβ 
expression and NF-κB activation, which is associated 
with diminished kidney injury and inflammation induced 
by ischemia–reperfusion [98].

A recent study reveals that induction of acute kid-
ney injury by high doses of folic acid is associated with 
increased expression of NF-κB members, RelA and 
NF-κB2 [99]. Inhibition of NF-κB with an inhibitor, pyr-
rolidine dithio-carbamate ammonium (PDTC) amelio-
rated the kidney dysfunction, suggesting that NF-κB 
plays a role in the pathogenesis of kidney injury. NF-κB 
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has also been implicated in the pathogenesis of kid-
ney damage caused by hypertension, a chronic medical 
condition with repeatedly elevated blood pressure [100, 
101]. The elevated level of angiotensin II, associated with 
hypertension, is a trigger for NF-κB activation and induc-
tion of inflammatory responses. Inhibition of NF-κB 
by transgenic expression of a degradation-resistant 
IκBα mutant, IκBα∆N, in endothelial cells ameliorates 
renal injury caused by hypertension in a mouse model. 
The NF-κB inhibition does not influence induction of 
hypertension but rather blocks hypertension-mediated 
induction of proinflamatory cytokines and cell adhe-
sion molecules involved in renal damages [100]. Similar 
results were obtained using a rat model of hypertension, 
in which an NF-κB inhibitor, PDTC, inhibits angiotensin 
II-induced inflammatory renal damage [101].

NF‑κB in IgA nephropathy
IgA nephropathy is the most commonly seen form of 
glomerulonephritis and is caused by aberrant produc-
tion of glycosylated IgA and its deposition to the kidney 
glomeruli as immune complexes [102, 103]. It has long 
been known that binding of IgA to Fc alpha receptors on 
mesangial cells activates NF-κB, which contributes to the 
induction of the chemokines MCP-1 and IL-8 [80]. More-
over, elevated levels of NF-κB have been detected in the 
tubular area of patients with IgA nephropathy, which is 
correlated with poor disease outcome [104–106]. NF-κB 
inhibitors have been implicated as anti-inflammatory 
agents for the treatment of immune glomerulonephritis 
[107, 108].

The noncanonical NF-κB has also been implicated in 
the regulation of IgA nephropathy [39]. Genetic defi-
ciency in a negative regulator of the noncanonical NF-κB 
pathway, TBK1, causes IgA hyper-production and devel-
opment of nephropathy-like symptoms in mice [39]. The 
TBK1-knockout mice have a substantially increased level 
of serum IgA and antibody deposition in the kidney glo-
meruli, associated with symptoms of kidney dysfunc-
tions, such as increased levels of urinary protein and 
serum nitrogen and creatinine [39]. The noncanonical 
NF-κB pathway is crucial for the induction of IgA class 
switching by CD40 and BAFFR, and TBK1 controls IgA 
class switching via negative regulation of noncanoni-
cal NF-κB activation [39]. Consistently, transgenic mice 
overexpressing the noncanonical NF-κB inducer BAFF in 
B cells aberrantly produce IgA and develop IgA nephrop-
athy [109, 110].

NF‑κB in lupus nephritis
Lupus nephritis is a frequently seen complication in 
patients with SLE and is known to significantly reduce 
the survival of SLE patients [111]. A hallmark of lupus 

nephritis is the renal inflammation caused by deposi-
tion of autoimmune complexes to kidney glomeruli 
[65]. NF-κB has been implicated in the pathogenesis of 
lupus nephritis. Patients with lupus nephritis have ele-
vated expression and activation of NF-κB in glomerular 
endothelial and mesangial cells, coupled with upregula-
tion of inflammatory cytokines [112, 113]. Inhibition of 
IKKβ attenuates the induction of inflammatory media-
tors by hypoxia in rat renal tubular cells [114]. An IKK-
selective inhibitor, Bay11-7082, ameliorates a mouse 
model of lupus nephritis by inhibiting NF-κB and the 
inflammasome NLRP3 [115]. Consistently, the genes 
encoding two NF-κB-negative regulators, A20 (also 
called TNFAIP3) and A20-binding inhibitor of NF-κB1 
(ABIN1; also called TNIP1), have been associated with 
human lupus and lupus nephritis [116, 117]. A20 is a 
ubiquitin-editing enzyme that negatively regulates NF-κB 
activation by various immune and inflammatory stimuli 
[118, 119], and ABIN1 is a ubiquitin-binding protein 
that inhibits NF-κB signaling by probably facilitating 
the action of A20 and, thereby, interfering with signal-
induced activation of IKK [120]. A20 deficiency in both 
human patients and animal models are associated with 
autoimmune and inflammatory diseases, including lupus 
[121]. Both human and mouse genetic studies also sug-
gest the involvement of ABIN1 in autoimmune nephritis. 
In particular, knockin mice expressing an inactive form of 
ABIN1 display aberrant activation of NF-κB and develop 
lupus-like autoimmunity and pathological symptoms 
resembling human lupus nephritis [117, 122].

A recent study suggests that Nrf2 regulates lupus 
nephritis via inhibition of both oxidative injury and 
NF-κB activation [123]. Nrf2 is a basic leucine zipper 
transcription factor with a crucial cytoprotective role in 
cellular responses to oxidative stress [124]. Nrf2 medi-
ates transcription of genes encoding antioxydants and 
other cytoprotective factors. Recent work suggests that 
the anti-inflammatory function of Nrf2 may also involve 
inhibition of NF-κB [123, 125], although the underlying 
mechanism is elusive. Mice deficient in Nrf2 spontane-
ously develop lupus-like autoimmune nephritis at old 
ages [126]. In a pristane-induced experimental lupus 
nephritis model, the Nrf2-deficient mice develop more 
severe renal damage and pathological symptoms [123]. 
Activation of NF-κB appears to be responsible for the 
aberrant production of inflammatory mediators, such as 
ROS and iNOS, and disease symptoms in the knockout 
mice.

NF‑κB in TWEAK‑stimulated inflammation in kidney 
diseases
TWEAK is a member of the TNF superfamily of 
cytokines [127]. TWEAK induces signal transduction 
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via binding to its receptor, fibroblast growth factor-
inducible 14 (Fn14). Strong evidence suggests that 
TWEAK plays an important role in the pathophysiologi-
cal processes of kidney diseases [128, 129]. TWEAK is 
expressed by infiltrating myeloid cells and T cells as well 
as renal tubular epithelial cells and mesangial cells. The 
TWEAK receptor Fn14 is expressed in several cell types 
of the kidney, including tubular cells, mesangial cells, 
and podocytes, as well as infiltrating macrophages [130]. 
Human kidney disease patients and animal models of 
kidney injury are associated with increased expression 
of TWEAK and Fn14 [129, 131, 132]. TWEAK stimu-
lates the activation of both canonical and noncanonical 
NF-κB pathways in renal tubular cells, thereby inducing 
the production of proinflammatory mediators [133, 134]. 
TWEAK induces the expression of proinflammatory 
cytokines and chemokines (such as MCP-1 and Rantes) 
via the canonical NF-κB pathway and the chemokines 
CCl21 and CCL19 via the NIK-dependent noncanoni-
cal NF-κB pathway [128]. Consistently, genetic ablation 
of TWEAK renders mice resistant to the induction of 
renal inflammation and fibrosis, whereas overexpression 
of TWEAK promotes the induction of kidney obstruc-
tions [135]. Genetic deficiency in Fn14 also ameliorates 
lupus nephritis in both induced and spontaneous models 
[136–138].

NF‑κB in lymphocyte‑mediated renal inflammation
In addition to mediating inflammation of the innate 
immune system, NF-κB has a crucial role in regulating 
the autoimmune and inflammatory functions of T and B 
cells [139]. Canonical NF-κB pathway is required for the 
generation of Th17 cells from naïve CD4+ T cells [51, 52]. 
Although noncanonical NF-κB pathway is not important 
for Th17 differentiation, it is crucial for the pathological 
effector function of Th17 cells in mediating inflamma-
tion [55]. Of note, the Th17 subset of CD4+ inflamma-
tory T cells has been implicated in the pathogenesis of 
renal inflammation [140, 141]. Experimental renal injury 
in animal models is associated with infiltration of effec-
tor T cells, including Th17 cells [142]. Kidney infiltration 
with Th17 cells has also been found in human patients 
with kidney diseases [141]. In a mouse model of antigen-
specific glomerulonephritis, in which the antigen ovalbu-
min is planted on the glomerular basement membrane 
of Rag1-knockout mice, injection of ovalbumin-specific 
Th1 or Th17 cells induces proliferative glomerulonephri-
tis [143]. Genetic evidence for the involvement of Th17 
cells in renal inflammation was obtained using animal 
models deficient in the IL-17 signature cytokine IL-17 
or the Th17-maintence cytokine IL-23 [144–146]. Given 
the crucial role of NF-κB pathways in the generation and 
effector function of Th17 cells, the pro-inflammatory 

functions of NF-κB in renal diseases likely involve inflam-
matory T cells.

B cells have a central role in the pathogenesis of lupus 
nephritis and IgA nephropathy [147, 148]. Both canoni-
cal and noncanonical NF-κB pathways are crucial for 
the survival and function of B cells [149]. The BAFF/
BAFFR signaling system provides a strong stimulus for 
the activation of noncanonical NF-κB pathway and also 
stimulates additional survival pathways, including the 
canonical NF-κB and PI3 kinase pathways [13, 14, 149]. 
Thus, under physiological conditions, BAFF maintains 
the survival of B cells and is required for B cell matura-
tion in the spleen [150]. However, deregulated produc-
tion of BAFF has been linked to the pathogenesis of lupus 
nephritis and IgA nephropathy [151, 152]. Patients with 
lupus nephritis and IgA nephropathy have elevated level 
of serum BAFF, which is associated with clinical severity 
of the diseases [153–155]. Transgenic mice overexpress-
ing BAFF have B cell hyperplasia and autoimmune mani-
festations, including nephritis and IgA nephropathy-like 
symptoms [110]. In line with this finding, mice deficient 
in a negative regulator of the noncanonical NF-κB path-
way, TBK1, also have aberrant production of IgA and 
develop nephropathy-like symptoms [39]. A monoclo-
nal antibody targeting soluble BAFF, belimumab, has 
been approved for the treatment of lupus with promising 
potential for the treatment of autoimmune kidney dis-
eases like lupus nephritis [152].

Concluding remarks
NF-κB has been well established as a pivotal mediator 
of inflammation, although its role in mediating inflam-
mation in specific organs is less well understood. Nev-
ertheless, accumulating studies suggest the involvement 
of NF-κB in the pathogenesis of renal inflammatory dis-
eases. NF-κB is activated in both human patients with 
kidney diseases and animal models of renal inflamma-
tion and injury. NF-κB appears to mediate renal inflam-
mation in different cell types, including renal cells, innate 
immune cells, and lymphocytes. It is thus clear that tar-
geting NF-κB signaling pathway represents an attrac-
tive therapeutic approach in renal disease treatment. 
However, global inhibition of NF-κB may cause severe 
side effect, since NF-κB is required for normal immune 
responses and cell survival. Understanding the mecha-
nism that underlies pathological activation of NF-κB in 
renal diseases is crucial for designing more specific and 
effective therapeutic agents.
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