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Epigenetic regulation in cancer progression
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Abstract

Transcription

Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in
gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH)
as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations
in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of
oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or
repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological
systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic
modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It
is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic
changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of
tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic
alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis.
Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are
epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may
play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how
deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that
epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can
modulate protein expression and activity, as well as the role of hypoxia in epigenetic regulation.
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Introduction

Cancer initiation and progression have been recognised
for many years to be secondary to the accumulation of
genetic mutations which lead to changes in cellular
function. While inherited or sporadic mutations may re-
sult in the activation of oncogenes or the inactivation of
tumour suppressor genes, changes in modification of
both DNA and histones (collectively the epigenome) can
also contribute to the initiation and the progression of
cancer. Although epigenetics is formally defined as a
heritable change in gene expression or chromosomal sta-
bility by utilising DNA methylation, covalent modifica-
tion of histones or non-coding RNAs without a change
in DNA sequence, it is increasingly used to define long
term changes that alter the physiology of a subset of
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cells in a tissue independent of a change in the DNA se-
quence. It should be noted that epigenetic marks are dy-
namic and can respond to changes in physiological
conditions and hence, in addition to gene mutations,
can be drivers of the development of the cancer. Global
reprogramming of epigenetic marks, including alter-
ations in DNA methylation and histone modifications, is
known to occur in malignancy [1].

Epigenetic regulation

Epigenetic modification of chromatin plays an important
role in the regulation of gene expression. DNA is meth-
ylated post-synthetically on cytosine residues predomin-
antly in the sequence CpG and in vitro methylated
promoters are known to be generally inactive when trans-
fected into eukaryotic cells [2]. DNA methylation is cata-
lysed by a family of DNA methyltransferases (DNMTs):
DNMTT1 is the methyltransferase that maintains reciprocal
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methylation of the new DNA strand complementary to
hemi-methylated DNA that is produced as a result of semi-
conservative DNA replication. DNMT3a and DNMT3b are
known as de novo methyltransferases, being able to methy-
late the completely unmethylated DNA duplex in vivo [3,4].
More recently it has been shown that 5-methylcytosine
can be oxidised to 5-hydroxymethylcytosine by a family of
Fe**, 2-oxoglutarate dependent methylcytosine dioxy-
genases known as TET proteins [5], effectively resulting in
the subsequent removal of the repressive methyl group by
a mechanism that appears to include base excision repair
processes. Other DNA modifications are also described
such as methylation at sites other than CpG [6,7] and the
generation of formyl and carboxyl derivatives of DNA [8].

Earlier discussions that derived from those that stud-
ied transgenerational phenomena focused on the clas-
sical set of DNMTs. However, epigenetic modifications
go beyond DNA methylation. The histone proteins in
chromatin are also modified on their N-terminal resi-
dues and transcriptional states are frequently associated
with particular histone modifications [9]. The number
and complexity of the potential combinations of these
has grown very rapidly in recent years [10] but a simpli-
fied generalisation could be that acetylation of histones
H3 and H4 and methylation of the lysine-4 residue of
histone H3 (H3K4) are associated with active genes. In-
active genes are frequently hypoacetylated and may also
be methylated on the lysine-9 (H3K9) or lysine-27
(H3K27) residues of histone H3 (reviewed in [11]). Clearly
there are possibilities for more complex situations when,
for example, both H3K4 and H3K27 are methylated as oc-
curs at bivalent domains in embryonic stem cells [12]. Al-
though most studies tend to focus attention on either the
DNA or histone modifications, it is clear that in order for
a gene to be transcribed there is interplay between the
methylated DNA and the modified histones. Both the
DNA and the histones should be in an open or “unlocked”
configuration, as shown in Figure 1, to be in a permissible
state for transcription. If the epigenetic marks on the
DNA or histones are in a closed or “locked” state, the gene
of interest will not be transcribed. This is a concept that
we term the “Double Lock Principle” as both the DNA
methylation status and histone modifications are critical
to the expression of a gene. In addition, the required tran-
scriptional activator must be present and the necessity to
have it and the “double lock” correctly aligned explains a
lot of data where genes are not expressed despite what
could be considered to be tolerant conditions.

Many enzymes have been identified that methylate, de-
methylate, acetylate, deacetylate, phosphorylate, ubiquiti-
nate or sumoylate histones. There is redundancy and
specificity in these enzymes that is required to deliver
the full range of potential histone post-translational
modifications. Additionally these enzymes may modify
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non-histone proteins such as Reptin and p53, contribut-
ing to their post-translational regulation (Table 1).

DNA methylation patterns and histone modifications
have been found to be different when normal tissues and
tumours derived from them are compared. All gene ex-
pression is ultimately controlled by their epigenetic sta-
tus and it is not surprising therefore that epigenetic
changes may play an important role in tumorigenesis.
However, why these changes occur is unknown nor is it
always clear if these changes are the causes of the
tumour growth or if they are responding to altered envi-
ronments (e.g. hypoxia). It is most likely that both se-
quences of events occur and irrespective of whether
these are causes or consequences the epigenetic status is
crucial to the cellular outcomes.

The enzymes mediating epigenetic modifications have
been found to be mutated in cancers, which adds to an in-
direct manner in which tumours develop as the change in
the modifier can affect the gene expression patterns. This
suggests also that epigenetic modifiers may act as novel
targets for therapy. Mutations of DNMT3a have been ob-
served in 22% of cases of acute myeloid leukaemia (AML)
where they are associated with a poor outcome [13]. Simi-
larly, the methylcytosine dioxygenase TET2 is mutated in
~15% of myeloid cancers [14]. Tet2-deficiency in mutant
mice causes myeloproliferation, suggesting a role in stem
cell function [15]. The H3K27 demethylase UTX is mu-
tated in multiple human cancers, the highest frequency
(~10%) being in multiple myeloma [16]. The discovery of
mutations in genes that modify chromatin suggests that
the disruption of epigenetic control has a very significant
role in the promotion of cancers. There are also secondary
roles where specific proteins bind to correctly modified
histones. Alteration in their structure can also drive the
development of tumours. For example ASXL1 (additional
sex comb-like 1) is a member of the Polycomb group of
proteins that bind modified histones and is mutated in
11% of myelodysplastic syndromes and 43% of chronic
myelomonocytic leukaemias [16,17].

DNA methylation

The status of DNA methylation is crucial as one part of
the “double lock” of gene expression. As a generalisation,
promoters with methylated DNA tend not to be ex-
pressed. Clusters of CpGs (the predominant target for
DNA methylation) are known as CpG islands and are lo-
cated at the 5' ends of many human genes. In tissues,
most CpG islands are unmethylated, even when the as-
sociated genes are not expressed [18]. However in can-
cer, DNA hypermethylation occurs at many CpG islands,
as well as global DNA hypomethylation (discussed in
DNA demethylation section). Promoter methylation is al-
most always associated with gene-silencing, raising the
possibility that aberrant methylation might cause silencing
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Figure 1 Double Lock Principle. A gene will be transcribed when it is in the open or “unlocked” state. The promoter region is demethylated,
histones acetylated and H3K4me marked. If the gene is silenced, in a closed or “locked” state, DNA methyltransferases (DNMTSs), histone
deacetylases (HDACs), histone methyltransferases (HMTs) and histone demethyltransferases (HDMs) have modified the promoter region, removing
the histone acetylation and modifying methylation accordingly. For the gene to be transcribed, the repression marks will need to be lifted to
confer the open, “unlocked” state, by the TETs (removal of methylation on the promoter), histone acetyltransferases (HATs) and the HMTs/HDM:s.
If the DNA exists in any in-between state, with only partial silencing or activation marks, the gene remains repressed, hence the term “Double
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and be part of the transforming process. A potential role
in tumorigenesis with a strong mechanistic pathway is
suggested when methylation is shown to occur at known
tumour suppressor genes. DNA hypermethylation of the
cell cycle control gene RB (retinoblastoma) was one of
the first epigenetic lesions to be implicated in carcino-
genesis. Aberrant methylation occurs in approximately
10% of cases of sporadic unilateral retinoblastoma [19]
and is associated with the loss of RB expression [20].
The case of DNA methylation in RB remains one of the
strongest arguments in favour of a causal role for aber-
rant methylation in carcinogenesis as the RB gene is
usually active in the precursor cells of tumours and pro-
moter methylation appears to have the same effect as
genetic mutation of the gene [21]. Another tumour type
in which this occurs is microsatellite unstable colon can-
cer. Inherited forms of the disease are frequently caused

by germline mutation of the DNA mismatch repair
(MMR) protein MLHI1 [22]. However, approximately
15% of cases of sporadic colon cancer lack MMR gene
mutations yet still exhibit microsatellite instability [23].
These cases have methylated MLH1 promoters and lack
expression of the gene [24]. In cell lines showing this ab-
normality, the MLH1 repression is reported to be re-
versed by treatment with the demethylating agent 5-aza-
2'-deoxycytidine [25]. Another in a growing number of
examples is the aberrant methylation of the p16™ %/
CDKN2A promoter which has been shown to be present
in both human squamous cell carcinomas and their pre-
cursor lesions [26], indicating that it occurs in the early
stages of neoplastic transformation. Similarly, methyla-
tion of GSTP1 (m-class glutathione S-transferase) is an
early event in prostate carcinogenesis as it is also found
in premalignant lesions [27]. In colorectal carcinogenesis,
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Table 1 Classification of epigenetic modifiers
Class Enzymes
Histone Acetyltransferases (HATS) ELP3/KAT9 PCAF/KAT2B MORF/MYST4/KAT6B
GTF3C4 CBP/KAT3A HBO1/MYST2/KAT7
HAT3 p300/KAT3B MOF/MYST1/KAT8
HAT1/KAT1 Tip60/KATS KAT10
GCN5/KAT2A MOZ/MYST3/KAT6A TFINICO0/KAT12
Histone Deacetylases (HDACs) HDAC1 HDAC7 SIRT2
HDAC2 HDAC8 SIRT3
HDAC3 HDAC9 SIRT4
HDAC4 HDAC10 SIRTS
HDAC5 HDACT1 SIRT6
HDACe6 SIRT1 SIRT7
Histone Methyltransferases (HMTs) ASH1 NSD1/KMT3B SETD1A
Clr4/KMT1 PRMT1 SETD8/Pr-SET7/KMT5A
Dot1L/KMT4 PRMT3 SETDB1
EZH2/KMT6 PRMT4/CARM1 SETDB2/KMT1F/CLL8
G9a/EHMT2 PRMT5/JBP1 SMYD2/KMT3C
GLP/EHMTT PRMT6 SUV39H1
KMT5B/KMT5C Riz1/Riz2/KMT8 SUV39H2
MLL1 NF20 SUV4-20H2/KMT5C
MLL2 RNF40 TRX/ KMT2a
MLL3 SETTA HIF-1/ SET2/HYPB/KMT3A
MLL4 SET1B
MLL5 SET7/9
Histone Demethylases (HDMs) ARIDTA JHDM1b/FBXL10/KDM2B JMID2D/KDM4D
ARID5B JHDM2A/KDM3A JMJD3/KDM6B
JARID1A/RBBP2/KDM5A JHDM3A/JMID2A/KDM4A LSD1/KDM1
JARID1B/PLU1/KDM5B JMID1A LSD2
JARID1C/SMCX/KDM5C JMJD1B/KDM3B PHF2
JARID1D/SMCY/KDM5D JMID2A PLUT
JHD1/KDM2 JMJD2B/KDM4B UTX/KDM6A
JHDM1a/FBXL11/KDM2A JMID2C/GASC1/KDM4C
DNA Methyltransferases (DNMTs) DNMT1 DNMT3b DNMT1o
DNMT3a DNMT3L
DNA Demethylases TET1 TET2 TET3

hypermethylation of a region of chromosome 17p corre-
sponding to the location of the tumour suppressor p53
has been demonstrated to precede its allelic loss, sug-
gesting that methylation may non-randomly mark
chromosome regions that are altered during the develop-
ment of specific tumours [28]. Because of these exam-
ples, it has been assumed that aberrant methylation
plays a role in malignant transformation [1], particularly
when methylation has been demonstrated to occur early
in the tumorigenic process. The methylation-induced si-
lencing of tumour suppressor genes may provide cells

with a selective advantage over others, either by causing
their increased proliferation or resistance to apoptosis.
The clonal expansion of these premalignant cells could
result in the hyperproliferative phenotype that is charac-
teristic of the early stages of tumorigenesis [29]. Genes
such as RB, MLH1 and VHL are methylated in the
tumour types in which they are also commonly mutated,
suggesting that CpG island hypermethylation may be se-
lected for during tumorigenesis [30].

DNA hypermethylation has been used to subdivide
tumour types and distinguish them from non-malignant
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tissue [31]. Tumour subgroups with high levels of DNA
methylation have been designated as having a CpG is-
land methylator phenotype (CIMP) and are predomin-
antly associated with worse prognosis. CIMP was first
identified in colorectal tumours where they encompass
the majority of sporadic colorectal cancers with MMR-
deficiency and MLHI1 hypermethylation [32] and are
specifically associated with the BRAFY*°® mutation
[33]. CIMP has subsequently been found to define a sub-
set of glioblastomas [34], acute myeloid leukaemias [35],
gastric cancers [36] and ependymomas [37]. CIMP tu-
mours may thus represent distinct subgroups of tumours
which otherwise have few genetic alterations, suggesting
that drugs targeting the epigenetic machinery may offer
novel approaches for therapy.

DNA demethylation

DNA demethylation has also been postulated to contrib-
ute to cancer development as despite evidence for regional
hypermethylation, global levels of 5-methylcytosine have
actually been found to be 5-10% less in tumours compared
to normal cells [38,39]. The methylation changes have
been suggested to occur specifically between the stages of
hyperplasia and benign neoplasia as DNA was found to be
significantly hypomethylated in both benign polyps and
malignant tissues when compared to normal tissue [40].
Methylation patterns were therefore altered before the le-
sions became malignant, suggesting that they could be a
key event in tumour evolution. The cause of global hy-
pomethylation in cancer is unknown but the outcome,
in due course, may be that oncogene expression is in-
creased or other genes important for growth control are
deregulated.

Several mechanisms have been proposed for the de-
methylation of DNA; passive demethylation may occur
due to the inability of the maintenance methyltransferase
to complete the methylation step that would normally
be guided by hemi-methylated DNA post-replication.
This is thought to be the case for the maternal pro-
nucleus which undergoes passive demethylation during
pre-implantation development, most likely due to se-
questration of the oocyte-specific form of DNMT1
(DNMT1o) in the cytoplasm throughout most of cleav-
age [41]. Conversely, rapid demethylation of the paternal
pronucleus appears to be due to the oxidation of 5-
methylcytosine to 5-hydroxymethylcytosine by TET3
[42]. There is evidence that the maintenance methyltrans-
ferase DNMT1 does not restore methylation to cytosines
in the newly synthesised daughter strand if the diagonally
opposite cytosine on the parent strand is hydroxy-
methylated [43], resulting in replication-dependent
passive dilution of 5-methylcytosine. Active DNA de-
methylation in cultured human cells and the adult
mouse brain has been demonstrated to involve TET1-
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catalysed hydroxymethylation, followed by AID/APO-
BEC-mediated deamination of 5-hydroxymethylcytosine,
with the resulting base mismatch being removed by the
base excision repair pathway [44]. TET proteins are also
able to further oxidise 5-hydroxymethylcytosine to 5-
formylcytosine and 5-carboxylcytosine which can be ex-
cised by TDG (thymine DNA glycosylase) and repaired by
the base excision repair pathway [45,46]. In a study that
examined the methylation status of a number of genes
when the cells were released from a synchronising block,
DNA methylation and demethylation have been shown to
cycle approximately every hour ([47,48]. This was a sur-
prise discovery that permits different possibilities includ-
ing a dynamic, replication-independent response to
changes in physiological conditions such as hypoxia. One
mechanism that has been proposed is that TDG and com-
ponents of the base excision repair pathway were re-
cruited to the promoter at the beginning of each
transcriptionally productive cycle and a reduction in TDG
expression impaired demethylation and reduced transcrip-
tional activity [48].

Contrary to expectations, loss-of-function of the
methylcytosine dioxygenase TET2 is predominantly as-
sociated with loss of DNA methylation [49]. TET2 is
mutated in ~15% of myeloid cancers [14], resulting in
impaired hydroxylation [49]. TET2 function is also
inhibited by the oncometabolite 2-hydroxyglutarate gen-
erated by mutant IDH1 in acute myeloid leukaemias
[35]. Downregulation of TET expression has been re-
ported in breast and liver cancers, with reduced levels of
5-hydroxymethylcytosine [50]. DNA methylation pat-
terns may thus be modified by altered expression or ac-
tivity of epigenetic regulators such as TET.

Histone modifications

Chromatin remodelling is by the so called “histone-
code” involving various covalent modifications of the
histones such as acetylation, phosphorylation and
methylation which have been subject to many studies
and their importance is now well accepted [51]. However,
the transcriptional state can also be regulated by many
chromatin-associated protein complexes that are either in-
volved in enhancing or fine-tuning of the promoter activ-
ity and some of these respond to the altered contexts that
arise from the histone and DNA modifications. The his-
tone methylation balance on specific residues in particular
is crucial for maintaining genome integrity, gene expres-
sion and evasion of cancer [10,52,53].

Misregulation of the histone methyltransferases (HMTs)
and the histone demethylases (HDMs) has been associated
with a variety of cancer types including breast, prostate,
lung and brain [54-58]. Specifically, the HMTs and the
HDMs play important roles in multiple tissues regulating
the methylation status of four lysine residues K4, K9, K27
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and K36 on histone H3. Similar to DNA methylation pat-
terns, histone modification patterns have also been used
to predict prognosis in multiple cancers. Reduced levels of
H3K9ac, H3K9me3 and H4Kl6ac correlated with recur-
rence of non-small cell lung cancer [59]. In prostate
cancer, lower levels of H3K4me2 and H3K18ac were asso-
ciated with poor prognosis [60]. Loss of H3K9me3 has
been found in core promoter regions of genes in patients
with acute myeloid leukaemia. Global H3K9me3 patterns
were additionally able to independently predict patient
prognosis in acute myeloid leukaemia [61]. These cancers
have amplifications, deletions and somatic mutations
which all lead to changes in the enzymatic activities of the
HMTs and the HDMs. For example, the repressive histone
mark trimethylated H3K27 (H3K27me3) is mediated by
the catalytic SET domain of EZH2 (enhancer of zeste
homologue 2), a protein that forms part of PRC2 (Poly-
comb repressive complex 2). EZH2 has been reported to
be up-regulated in metastatic prostate cancer relative to
localised disease or benign prostatic hypertrophy, suggest-
ing a potential involvement in prostate cancer progression
[57], and its over-expression also correlates with breast
cancer aggressiveness and poor prognosis [56]. The H3K9
methyltransferase G9a reportedly promotes lung cancer
invasion and metastasis by silencing Ep-CAM [55]. It is
also known that hypoxia in tumours can influence methy-
lation of the histone H3K9 as well as the chromatin re-
modelling factors by increasing G9a protein stability
[62-64]. It should be noted that here, as was the case in
consideration of the role of DNA methylation, it is the
switching off of gene expression that drives tumour pro-
gression. Even though there is an equal possibility for
genes that are deleterious to be switched on through
changes in the enzymes that alter the epigenome, it would
seem that the switching off of genes is the crucial trigger
for the progression of tumours through altering the inher-
ent stable balance in cells.

In order to maintain methylation balance, several
“histone” demethylases exist which demethylate specific
residues, i.e. the reverse of the action of the methyltrans-
ferases on different histone residues. There are two clas-
ses of HDM families identified which use distinct
biochemical reactions to achieve demethylation. Lysine-
specific demethylase 1 (LSD1) was the first enzyme iden-
tified to demethylate H3K4mel and H3K4me2, and later
found to also demethylate H3K9mel and H3K9me2
[65,66]. LSD1 is known to utilise flavin adenine di-
nucleotide (FAD)-dependent amine oxidation reaction
for demethylating its substrates and appears to be a very
promiscuous protein, having the ability to interact with
many proteins and to be involved in multiple biological
functions. It should be noted that a potential linkage be-
tween metabolic state and gene expression arises from
the use of this co-factor and this may be crucial to

Page 6 of 11

ensure that it does not destabilise the epigenome. The
second class of demethylases includes several proteins
that possess a catalytic JIMJC domain. These enzymes de-
methylate histone residues through a dioxygenase reac-
tion which depend on Fe (II) and a-ketoglutarate as
cofactors. Again it is interesting to note the crucial role
of a metabolite which suggests that the integration of di-
verse cellular processes and the environment in which
the cell resides is decisive on defining the pattern of
genes that will be expressed or repressed. It is self evi-
dent that some such process is a necessary integrator of
cell physiology. Unlike LSD1, JMJC domain-containing
demethylases such as JHDM3A have the ability to de-
methylate trimethylated histone H3K9 and H3K27 resi-
dues [67,68]. More recently, deregulation and mutations
that affect the enzymatic activity have been found for
the HDMs. The H3K27 demethylase JMJD3 is found to
be down-regulated in liver and lung cancers [58] while
inactivating somatic mutations in the UTX gene are fre-
quently found in multiple tumour types [16]. Knock-out
mouse models of some of these HDMs have been gener-
ated and result in distinct phenotypes [68,69] including
many that are lethal, indicating that proper expression
of HDM:s is crucial for development [69,70].

Non-histone methylation

Although their name arises from the first substrate that
was associated with them, several proteins other than
histones have been identified to be methylated by the
HMTs and also demethylated by the HDMs [71-73]. The
tumour suppressor protein p53 was one of the first non-
histone substrates identified to be methylated by several
HMTs including Set9, smyd2 and G9a [71,72,74] and
also demethylated by LSD1 [66,73]. Depending on which
lysine residue is methylated, the transcriptional activity
of p53 is specifically regulated. Methylation of non-
histone proteins by HMTs has been shown to result in a
range of outcomes ranging from functional activation
[64,75] to repression [76] or degradation [77]. Hypoxia
induces methylation of the chromatin remodelling pro-
tein Pontin by stabilising G9a. Methylated Pontin inter-
acts with p300 histone acetyltransferase and HIF-a to
hyperactivate a subset of HIF-a target genes [64]
(Figure 2). G9a also increases methylation of another
chromatin remodelling protein Reptin in a hypoxia-
dependent manner. Unlike Pontin methylation, Reptin
methylation results in negative regulation of a distinct
subset of HIF-a target genes [63]. Two non-histone sub-
strates of EZH2 have been reported recently both of
which represses its transcriptional activity. GATA4 is
methylated by EZH2 which reduces its interaction with
its coactivator p300 [76]. Our group has shown that
methylation of the nuclear receptor RORa by EZH2 re-
sults in increased polyubiquitination and proteasomal
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Figure 2 Transcriptional control in normoxia and hypoxia. (A) In normoxia, proteasomal degradation of HIFs prevents HIF-a binding to a
hypoxia response element (HRE) and transcriptional activation does not occur. (B) The expression of other genes can be regulated by methylation
at histones H3K9 and H3K27 by G9a and EZH2 respectively to maintain homeostasis. (C-E) In hypoxia, gene expression is regulated at multiple
layers; (C) HIF-a is stabilised in hypoxia and is able to bind to HREs and activate transcription. (D) The transcriptional activity of HIF-a can be
modulated by co-regulators; G9a methylates chromatin remodelling complex proteins such as Reptin and Pontin in hypoxia. Methylated Reptin
negatively regulates transcriptional activation by HIF-a at a subset of HIF-a target genes by recruiting a transcriptional co-repressor. Conversely,
Pontin methylation potentiates HIF-a-mediated transcription at another distinct subset of HIF-a target promoters by enhancing the recruitment
of a transcriptional co-activator. (E) The expression of histone methyltransferases such as G9a and EZH2 is elevated in hypoxia which leads to
silencing of tumour suppressors through the hypermethylation of histones H3K9 and H3K27.

degradation leading to decreased transcriptional activity
[77]. In turn this causes the loss of tumour suppressor
activity of RORa, which ultimately leads to the develop-
ment of more aggressive tumours.

It is not only the histone methyltransferases that inter-
act with various non-histone proteins, we have also
found that one of the HDMs (JMJD1A) interacts with

several proteins, possibly targeting them for demethyla-
tion. Therefore, the net status of protein methylation ap-
pears to have a broad range of biological functions.
Although the dynamic nature of this non-histone methy-
lation appears to be important just as it is the case for
histones, demethylation of these proteins has not been
studied extensively.
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Tumour hypoxia and regulation of gene
expression

Tumour hypoxia is an example of how epigenetic repro-
gramming occurs in cancer progression. In solid tu-
mours, hypoxia occurs as a result of the limitation of
oxygen diffusion in avascular primary tumours or their
metastases. Persistent hypoxia significantly reduces the
efficacy of radiation and chemotherapy and leads to poor
outcomes. This is mainly due to increases in pro-
survival genes that suppress apoptosis such as c-myc,
AMPK, GLUT1 and BNIP3 [78-81] and enhance tumour
angiogenesis, EMT (epithelial-to-mesenchymal transi-
tion), invasiveness and metastasis [82,83].

Much of tumour hypoxia research has been centred
on examining the transcriptional targets of HIFs (hyp-
oxia-inducible factors). HIF-a is a heterodimeric tran-
scription factor that is comprised of an oxygen-regulated
a subunit (HIF-la or HIF-2a) and a constitutively
expressed  subunit (HIF-1p) [84,85]. HIF-a is an oxygen-
responsive transcription factor that mediates adaptation to
hypoxia. Under low oxygen concentrations, HIF-a is stabi-
lised and translocates to the nucleus, leading to specific
target gene expression through binding of HIF-1f to a
hypoxia response element (HRE). HIF-a regulates hun-
dreds of genes involved in many biological processes
including tumour angiogenesis, glycolysis, invasion, me-
tabolism and survival and hence dramatically changes the
functioning of cells that reside in these conditions.

Hypoxia not only activates gene expression, but is also
involved in gene repression. While some of these genes
are known to be transcriptionally downregulated by the
recruitment of specific repressors such as DEC1 and
Snail [54,86], the contribution of hypoxia-driven epigen-
etic regulation to gene silencing remains unclear. It has
been shown that the expression of G9a and EZH?2 are el-
evated in hypoxic conditions, leading to global hyperme-
thylation of H3K9 and H3K27 respectively. These
repressive modifications were increased by hypoxia in
the promoter regions of tumour suppressor genes such
as RUNX3 and MLH1 which correlated with their silen-
cing, potentially promoting tumour progression [62,87].
We have found that the activity of G9a is deregulated in a
tumour setting; methylation of the non-histone proteins
Reptin or Pontin in hypoxic conditions negatively or posi-
tively regulates the transcription of a particular set of
genes involved in tumour metastasis [63,64] (Figure 2).

Conclusions

There has been significant attention in the literature to
the accumulated changes in DNA sequences that ultim-
ately give rise to tumours being formed. This has re-
sulted in a rather simple model of tumourgenesis based
on accumulated random mutations. In this article we
focus on the role of the epigenome as an alternative
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mode of acquiring dysfunctional cells that result in can-
cers. Having indicated the necessity to have both the
DNA and histone modifications correctly aligned such
that the expression of a gene occurs, we point to the
plethora of modifying enzymes that can have roles to
play. These enzymes with their ability to switch on or off
genes have every possibility to change a benign cell into
one that is cancerous. Indeed their normal function is to
ensure that the correct genes are expressed and that the
level of this expression and its timing are all coordinated
such that a physiologically normal cell exists. It is clear
that any perturbation from this state can have the effect
of either making the cell non-viable or to grow to an ex-
cessive level and hence become a tumour. A systems-
based approach is hence needed to fully integrate all of
the available information. What is clear is that both
DNA and histone hypermethylation and hypomethyla-
tion (and in the case of histones the acetylation state)
are associated with malignancy, indicating that balanced
epigenetic control is required. Targeting epigenetic mod-
ifiers presents novel strategies for cancer therapy in both
treating disease and delaying or even preventing resist-
ance to other therapies such as aromatase inhibitors. A
recent report found that extended use of aromatase in-
hibitors resulted in the recruitment of EZH2 and hence
increased H3K27me3 of the homeobox gene HOXC10
in breast cancer cells, ultimately leading to HOXC10
methylation and silencing and resistance to aromatase
inhibitors [88]. The DNA demethylating agents 5-
azacytidine and 5-aza-2’-deoxycytidine (decitabine) and
HDAC inhibitors SAHA (vorinostat) and romidepsin
have been approved for clinical use with the aim of re-
versing gene silencing mediated by the DNA methyl-
transferases or histone deacetylases. These growing
numbers of examples point to great complexity and
crossover mediated by epigenetic changes between the
different inhibitors in clinical use. Given the close inter-
play between DNA methylation and histone modifica-
tions, dual therapy targeting both types of epigenetic
modifications may be required. Selected novel drugs tar-
geting components of the epigenetic machinery are cur-
rently in pre-clinical or clinical development. Care
should, however, be taken in inhibiting epigenetic modi-
fiers due to their off-target effects as illustrated by the
non-histone targets for histone modifying enzymes.
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