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Thyroid hormone receptor actions on
transcription in amphibia: The roles of histone
modification and chromatin disruption
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Abstract

Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most
important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks.
Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3.
The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing
T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors
(TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can
both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and
histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More
recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3
signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene
regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as
evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene
activation by liganded TR during vertebrate development.
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Introduction
Thyroid hormone (T3) affects numerous biological pro-
cesses in vertebrates and thyroid diseases are arguably the
most prevalent group of metabolic disorders in the world
[1-3]. In the adult mammals such as humans, T3 deficiency
leads to reduced metabolic rate while both hyperthyroidism
and hypothyroidism result in abnormal function of diverse
organs and tissues [4-6].
T3 plays a critical role for vertebrate development. T3

deficiency during human development leads to a number
of developmental defects, including the formation of a
goiter, i.e., a lump in the neck due to enlarged thyroid
gland, and cretinism, which is manifested with severe men-
tal deficiency and short stature [7,8]. Similar requirement
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for T3 is also observed in other vertebrates. The most dra-
matic T3-regulated developmental process is anuran
metamorphosis, when an aquatic tadpole is transformed
into a terrestrial frog, as first demonstrated a century
ago [9-11]. This process resembles the postembryonic,
or perinatal development in mammals when plasma T3
levels also peak [12].
T3 can exert its effects at both the genomic level through

nuclear T3 receptors (TRs) and the non-genomic levels.
The non-genomic effects of T3 involve the binding of T3
to diverse cellular proteins. Among them include the cell
surface integrin αVβ3, better known as a receptor for the
extracellular matrix, and a number of cytosolic proteins,
which have additional, often enzymatic functions [13-19].
In addition, while TRs are predominantly localized in the
nucleus even in the absence of T3, some are present in the
cytoplasm. Interestingly, cytosolic TRβ can form a complex
with the signaling kinase MAPK, which may be responsible
for the rapid activation of MAPK by T3 [19], and
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unliganded TRβ can interact with phosphatidylinosital 3
kinase (PI3K) to activate this signaling pathway [20,21],
suggesting that cytoplasmic TR may mediate some non-
genomic effect of T3.
The genomic action of T3, i.e., transcriptional regulation

through TR, is believed to be the main function of T3
under most physiological and pathological conditions.
There are two TR genes in vertebrates, TRα and TRβ
genes, encoding two highly homologous proteins with high
affinity binding to T3, that can differ in their tissue and
temporal expression [22]. Mutations in TRβ have long
been shown to be responsible for the human syndrome
“resistance to T3” or RTH [23-25]. Most of these TRβ
mutants have reduced or abolished ability to bind to T3.
More recently, human patients due to mutated TRα genes
were reported, with the mutations causing resistance to
T3 but have a different phenotype than patients that have
mutations in TRβ [26,27]. The importance of TRs in
mediating T3 effects has also been substantiated by a large
number of gene knockout and transgenic studies in mice
[23,28]. Additionally, the total dependence of amphibian
metamorphosis on T3 has allowed us and others to show
that TR is both necessary and sufficient to mediate the
metamorphic effects of T3 [29-40], demonstrating an
essential role of TR in T3 signaling during development.

Gene regulation by TR
T3 can both activate and repress target gene transcription
through TRs. TRs are transcription factors belonging to the
nuclear hormone receptor superfamily that also include
steroid hormone receptors, 9-cis retinoic acid receptors
(RXRs), as well as a number of orphan receptors which
lack ligands or whose ligands remain to be identified
[2,22,41-43]. Like most other members of this family, TRs
bind to specific DNA elements called T3 response
elements or TREs and regulate target genes bearing such
elements in a ligand-dependent manner. TRs are mostly
localized in the nucleus even in the absence of T3 and can
bind to TREs both in the presence and absence of T3 to
regulate target gene transcription. TRs can function as
monomers, homodimers, as well as heterodimers with
RXRs. For genes induced by T3, TR/RXR heterodimers
bind to TREs in target genes even in the context of
chromatin [44]. At the unliganded state, the heterodimers
represses the target promoter and when T3 is available, the
liganded TR/RXR heterodimers then activate the same
promoters [2,41-46]. For genes that are down-regulated by
T3, the opposite is true. However, relatively few T3 down-
regulated genes have been studied and less is known about
how T3 represses these genes. Thus, we will focus here only
on T3-induced gene expression.
TR can recruit corepressor or coactivator complexes to

the T3-inducible promoters in the absence or presence of
T3, respectively (Figure 1). Many TR-interacting proteins
and complexes have been isolated and characterized over
the years [2,47-67]. The best-studied TR-corepressors are
two highly related proteins N-CoR (nuclear corepressor)
and SMRT (silencing mediator of retinoid and thyroid
hormone receptors). They form large histone deacetylase
(HDAC) 1 or HDAC3-containing complexes, although
most evidence suggests that unliganded TR recruits only
HDAC3-containing complexes (Table 1) [48-52,54,64,
68-77]. Thus, transcriptional repression by unliganded TR
likely involves histone deacetylation.
T3 binding to TR triggers the release of corepressor

complexes and recruitment of coactivator complexes. In
vitro and cell culture studies as well as analyses in the
reconstituted frog oocytes, where one can study the regu-
lation of chromatinized template, have shown that T3
induces the recruitment of diverse coactivator complexes
including ATP-dependent chromatin remodelers, histone
acetyltransferase/methyltransferase-containing complexes,
as well as TRAP/DRIP/mediator complex (Figure 1)
(Table 1) [2,53-60,65-67,78-89], suggesting that gene
activation by TR involves histone acetylation and/or
methylation as well as chromatin remodeling.
The involvement of these cofactors in T3 signaling

during development has been more difficult to substantiate
as cofactor knockout mice often have relatively mild
phenotypes due to cofactor redundancy or embryonic
lethal phenotypes, thus revealing little information
about their roles in development. In addition, when gene
knockout and transgenesis result in easily identifiable
phenotypes, such as mice deficient in N-CoR, p300
(an acetyltransferase), SRC1-3 (steroid receptor coactivator
1, 2, 3, acetyltransferases), or TRAP220 (the TR-binding
component of the TRAP complexes) [90-95], the wide
involvement of these cofactors in the gene regulation by
other transcription factors has made it difficult to link any
of the effects directly to T3 signaling defects. Despite these,
accumulating evidence has supported roles of some of the
cofactors in T3 signaling. One of the earliest was the
insensitivity to T3 of the SRC1 knockout mice [96].
More recently, mutations have been introduced to the
endogenous N-CoR and SMRT genes in mice and
found to cause derepression of T3-inducible genes,
supporting their roles in gene repression by unliganded
TR [97-99].
The dependence of amphibian metamorphosis on T3

and the ability to manipulate this process have enabled
extensive studies on the involvement of cofactors in T3
signaling in vivo. Chromatin immunoprecipitation (ChIP)
assays on tadpole tissues have shown that TR recruits
corepressor complexes to endogenous T3-inducible genes
in premetamorphic Xenopus laevis tadpoles when T3 is
absent [31,77,100]. More importantly, interfering core-
pressor function by overexpressing a dominant negative
N-CoR that contains only the TR interacting domain of



RXR/TR

Figure 1 A model for gene regulation by TR. In the absence of T3, TR forms heterodimers with RXR (9-cis retinoic acid receptor) and the
heterodimer binds to the T3 response elements (TREs) in the target genes to repress their expression by recruiting corepressor complexes such as
those containing the related protein N-CoR or SMRT and HDAC-3. When T3 is present, the corepressor complexes are released upon T3 binding
to TR, and coactivator complexes such as those containing SRC, p300, and PRMT1, are recruited. SRC and p300 are histone acetyltransferases and
PRMT1 is a histone methyltransferase.
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Xenopus laevis N-CoR leads to premature upregulation
of T3-inducible genes and precocious metamorphosis
[101], demonstrating an important role of corepressor
recruitment by unliganded TR during development.
When T3 is present either endogenously or by adding it

to the tadpole rearing water, the corepressor com-
plexes are released and coactivator complexes, such
as those containing histone acetyltransferases SRC3 and
p300 and histone methyltransferase PRMT1 (protein
arginine methyltransferase 1) are recruited by TR, accom-
panying the activation of target genes and metamorphosis
[84,86-89]. The critical role of coactivators SRC1-3 and
p300 in T3 signaling during metamorphosis is supported
by transgenic studies. SRCs bind to liganded TR directly
and interact with p300 and PRMT1 to form large coactiva-
tor complexes. Xenopus laevis SRC3 is upregulated during
Table 1 Known histone modification enzymes involved in
gene regulation by Xenopus TR

Cofactor Histone modification Gene regulation Reference

HDAC3 Deacetylation Repression [68,76,77]

SUV39H1 H3K9 methylation Repression [74,75]

G9a H3K9 methylation Repression [73,74]

SRC Acetylation Activation [55,86-88]

P300 Acetylation Activation [55,86,89]

CARM1 H3R17 methylation Activation [85]

PRMT1 H4R3 methylation Activation [84]
metamorphosis [102] and is recruited to target genes by
liganded TR in a gene- and tissue-specific manner during
metamorphosis [88]. Furthermore, transgenic overexpres-
sion of a dominant negative Xenopus laevis SRC3 that
contained only the TR-binding domain inhibited both gene
activation by T3 and metamorphosis [87], indicating that
coactivator recruitment is essential for liganded TR
function during metamorphosis.
As the dominant negative SRC3 blocked all coactivator

binding to liganded TR, the roles of specific coactivator
complexes remained unclear. Interestingly, transgenic
overexpression of a dominant negative p300 that contained
only the SRC-interacting domain also blocked gene activa-
tion and metamorphic changes during either T3-induced
or natural metamorphosis [89]. Since this mutant p300
does not interfere with the binding of liganded TR with
coactivators directly and only disrupts SRC-p300 inter-
action, the findings argue that SRC-p300 coactivator
complexes or related ones are required for the develop-
mental function of liganded TR. Further support for a
role of the SRC-p300 complexes in metamorphosis
came from transgenic overexpression of another com-
ponent of the complexes, PRMT1. Overexpression of
wild type PRMT1 enhances TR binding to endogenous
target genes, gene activation induced by T3, and the rate
of metamorphic progression [84]. Thus corepressor and
coactivator complexes play distinct roles in regulating
T3-target genes to affect different stages of animal
development.



Shi et al. Cell & Bioscience 2012, 2:42 Page 4 of 10
http://www.cellandbioscience.com/content/2/1/42
Chromatin disruption by liganded TR
Unlike steroid hormone receptors, TR is predominantly
localized in the nucleus even in the absence of T3 and
associated with chromatin [103]. Studies in the frog oocyte
transcription system, where the exogenous DNA injected
into the nucleus is chromatinized, offered the first
evidence for direct binding of unliganded TR to a TRE
in chromatin [44,104]. Interestingly, when the structure of
the minichromosome assembled in the Xenopus laevis
oocyte was analyzed, it was found that T3 induced the
disruption of the ordered nucleosomal organization in the
minichromosome in the presence but not in the absence
of TR (Figure 2) [44,45,105]. This disruption required
DNA binding domain of the TR (Figure 2A), indicating
that TR has to bind the TRE to mediate the disruption. By
using a supercoiling assay for a circular plasmid, it was
shown that the liganded TR-induced chromatin disruption
A

Figure 2 Transcriptional activation of the HIV-1 LTR by T3 but not his
disruption. (A) Disruption of the chromatin at the HIV LTR by liganded TR
injected with the mRNAs encoding RXR and TR or mutant TR lacking the D
plasmid into the nucleus. The reporter plasmid contained the T3-dependen
immunodeficiency virus type 1 (HIV-1), directing the transcription of the re
the reporter plasmid minichromosome was isolated from the oocytes for m
MNase. The digested DNA was purified and analyzed by Southern blot ana
demonstrates T3 but not TSA induces gross alterations of the structure of t
T3 or TSA and the LTR plasmid DNA was isolated for supercoiling assay. Af
DNA with different number of negative superhelical turns (the higher the n
the DNA was detected by Southern blot hybridization. Note that the avera
reduced by 2-3 when both TR/RXR and T3 are present. As each nucleosom
the liganded TR induced a structural change equivalent to the loss of 2-3 n
on the number of superhelical turns on the plasmid (compare lanes 2 to 1
was equivalent to the loss of 2–3 nucleosomes per receptor
binding locus (Figure 2B) [45,105]. While the underlying
mechanism for the chromatin remodeling remains to be
determined, it has been shown that liganded TR recruits
chromatin remodeling complexes containing Brg1 and
BAF57 to the TRE of the reporter gene [55,78]. Thus, it is
likely that such remodeling complexes participate in the
removal of the nucleosome near the TRE, thus facilitating
the assembly of the transcriptional machinery at the
promoter region.
More recently we have investigated chromatin changes

in vivo by using the model system of intestinal remodeling
during metamorphosis in Xenopus tropicalis, a species
highly related to the well-studied Xenopus laevis [106,107].
Intestinal remodeling involves the degeneration of larval
epithelium and concurrent do novo development of the
adult epithelial stem cells, followed by their proliferation
B
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tone deacetylase inhibitor trichostain A (TSA) leads to chromatin
requires direct binding of TR to the LTR. Xenopus oocytes were
NA binding domain (TRΔDBD) followed by the injection of a reporter
t promoter, the long terminal repeat (LTR), of the human
porter. The oocytes were treated with T3. After overnight incubation,
icrococcal nuclease (MNase) digestion assay with increasing amounts
lysis with a labeled LTR probe. (B). DNA topology analysis
he LTR minichromosome. The oocytes were injected and treated with
ter electrophoresis on a chloroquine-containing gel to separate the
egative superhelical turns, the slower the DNA migrated on the gel),
ge number of the negative superhelical turns (indicated by a star) was
e on the circular plasmid generates one negative superhelical turn,
ucleosomes on the minichromosome. In contrast, TSA had little effect
). See [105,127] for details.
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and differentiation into the adult epithelium [108-110].
This process resembles the maturation of the mammalian
intestine during perinatal development when plasma T3
level is high [111,112]. The simplicity and cell composition
of the intestine has made it a valuable model to study the
mechanism of TR action during development. By using
ChIP assay with antibodies again core histones H2B and
H3, we have recently shown that during either T3-induced
or natural metamorphosis, T3 induces the removal of
core histones from the TRE regions of T3 response
genes, including TRβ, in the Xenopus tropicalis intestine,
accompanying increased TR binding and recruitment of
RNA polymerase II (Figure 3A) [113]. This finding suggests
local removal of nucleosomes by liganded TR, consistent
A
TRβ T TRE TRβ E E xon5

Figure 3 (A) TR binding to the target gene TRβ leads to the recruitme
T3-induced metamorphosis in Xenopus tropicalis intestine. Tadpoles at
was isolated for ChIP assay with anti-TR, anti-Pol α, anti-H3, or anti-H2B ant
presence of the TRE region of the TRβ promoter or a region of TRβ exon 5
the exon 5 in the absence of T3 in premetamorphic tadpoles. In the presen
accompanied by the recruitment Pol II and reduction in total histones at th
due to increased transcription in the presence of T3. Error bars indicate s.e.
significant differences, p < 0.05 and p < 0.01, respectively. (B). Changes in a
correlate with gene activation by liganded TR. Premetamorphic tadpoles at
and subjected to ChIP assay with anti-AcH3, anti-H3K79me3, anti-H3K27me
ChIP signals of histone H3 in (A) for the corresponding promoter/exon reg
pairs of samples with significant differences, p < 0.05 and p < 0.01, respect
with the observations in the frog oocyte transcription
system. Interestingly, both Brg1 and BAF57, component of
the Brg1-containing chromatin remodeling complex, are
upregulated or expressed during metamorphosis in
Xenopus laevis [78], suggesting that the nucleosome
removal during intestinal metamorphosis involve the
recruitment of this complex by liganded TR.

T3-induced histone modifications at target genes
The recruitment by TR of a number of cofactor complexes
containing histone modification enzymes implicates a role
of histone modification in gene regulation by TR. Studies in
the frog oocyte showed early on that HDAC activity and
chromatin assembly were both required for efficient
B
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nt of RNA polymerase α (Pol II) and loss of core histones during
stage 54 were treated with or without T3 for 2 days, and the intestine
ibody. The immunoprecipitated DNA was analyzed by qPCR for the
as a negative control. Note that TR is bound to the promoter but not
ce of T3, TR binding to the TREs was increased at the promoter,
e TRE region. Increased Pol II was also observed in the exon region
m. (n=3). The one and two stars indicate pairs of samples with
ll histone activation marks but only one of the two repression marks
stage 54 were treated with T3 for 2 days. The intestine was isolated
3 or anti-H3K9me3 antibody. ChIP signals were normalized with the
ions. Error bars indicate s.e.m. (n=3). The one and two stars indicate
ively. See [113] for details.
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promoter repression by unliganded TR in vivo [46,114].
ChIP assays with antibodies against acetylated histones
showed that T3 treatment or blocking HDAC activity leads
to increased histone acetylation at T3-target genes both in
mammalian cell cultures and frog oocytes as well as
during frog metamorphosis [114-117]. More importantly,
treatment of premetamorphic tadpoles with a histone
deacetylase inhibitor leads to precocious induction of T3
response genes in the absence of T3, supporting a role of
deacetylase in gene repression by unliganded TR in
premetamorphic tadpoles [118,119].
In addition to histone acetylation, histone methylation

and phosphorylation have also been implicated to play a
role in gene regulation by TR in the frog oocyte
transcription system [75]. During Xenopus tropicalis
metamorphosis, gene activation by TR is accompanied
by changes in the methylation levels of various histone
residues [113,120,121] (Figure 3B). Bilesimo et al. [120]
observed that in the brain and tail fin of tadpoles treated
with T3, gene activation by T3 was associated with distinct
patterns of histone methylations and that gene-specific
patterns of TR binding to target genes correlated with
gene-specific modifications of H3K4 methylation. Further-
more, treatment of tadpole tail fin with an inhibitor of
histone demethylases led to increased T3-response gene
expression and TR binding to TREs, supporting a role of
histone methylation in gene regulation by T3. In our own
studies on intestinal remodeling during metamorphosis, we
observed that of the three activation histone methylation
marks analyzed, all were increased upon gene activation by
T3 (Figure 3B) [113]. In contrast, of the two repression
histone methylation marks analyzed, only one was reduced
upon gene activation by T3 while the other did not change
at the TRE region and was increased in the downstream
transcribed region (Figure 3B) [113]. As the activation and
repression marks were defined based on correlations with
gene expression levels in cultured cells, these findings
suggest that tissue and/or developmental context may affect
the utilization of histone modification patterns in vivo.
T3 induces changes in histone modifications at tar-

get genes presumably by recruiting different cofactor
complexes via TRs. ChIP assays have shown that
during Xenopus laevis or tropicalis metamorphosis,
increased histone acetylation correlates with the
activation of T3 target genes (Figure 3B), the release
of corepressors and the recruitment of coactivators
[31,77,86-89,100,113,117,120]. Furthermore, transgenic
studies have shown that the recruitment of coactivator
complexes containing acetyltransferases SRC3 and p300
or related complexes is essential for the histone
acetylation, gene activation and metamorphosis [87-89],
demonstrating a role of histone acetyltransferase-
containing coactivator complexes in T3 signaling during
development.
The increase in histone methylation at T3 target genes
during metamorphosis is likely due to the recruitment
of histone methyltransferases. At least three histone
methyltransferases, CARM1 (coactivator-associated argi-
nine methyltransferase 1), PRMT1, and Dot1L (Dot1-like),
have been shown to be expressed during metamorphosis
in Xenopus laevis or tropicalis [84,85,122]. Among them,
Dot1L is induced by T3 during metamorphosis directly at
the transcription level [122], while PRMT1 is indirectly
induced by T3 via the induction of c-Myc gene [84,123].
PRMT1 is known to be associated with the SRC-p300
complexes and is recruited to T3 target genes during
metamorphosis [84]. More importantly, transgenic over-
expression of PRMT1 leads to increased expression of T3
target genes and accelerated metamorphosis [84,124],
supporting a role of PRMT1 in T3 signaling. Dot1L is
the only known histone methyltransferase capable of
methylating H3K79, which is correlated with gene acti-
vation by T3 (Figure 3B) [113]. Thus, T3 activates the
Dot1L gene, and Dot1L in turn feeds back positively
on liganded TR function during metamorphosis by
methylating H3K79 at T3 target genes.

Conclusion
T3 has long been known to be critical for human
development, mainly due to its effect on perinatal
development. The developmental mechanisms of T3
action, however, have been more difficult to decipher
in mammals. Amphibian metamorphosis offers an
opportunity to dissect the function and associated
mechanisms of T3 action during development without
the complication of maternal influences. This has
enabled the demonstration of dual function roles of TR
during development [33]. More importantly, studies in
frogs were the first to provide in vivo evidence for the
requirement cofactors in TR function in development.
More recent studies in cell cultures, frog oocytes, as
well as during metamorphosis, have shown that during
vertebrate development, when T3 is absent or at low levels,
TR/RXR heterodimers recruit corepressor complexes at
T3 inducible genes to establish a repressive chromatin
structure in part by using repression histone marks
(Figure 4). When T3 becomes available, the corepres-
sor complexes are removed and coactivator complexes
are recruited. These complexes help to disrupt the
ordered chromatin structure, causing local release of
nucleosomes and increases in the levels of activation
histone marks (Figure 4). Consequently genes are
activated and the developmental effects of T3 are
transduced toward downstream events. Clearly, many
important questions remain to be addressed. Of
immediate interests are the roles of different histone
modification enzymes and chromatin remodeling
complexes in tissue- and gene-specific regulation of



Coactivator
Complexes: SRC3/p300/PRMT1

TRE

Activation markRepression mark

T3

TRE

Histone 
tails

RXR/TR

Corepressor 
Complexes: N-CoR/HDAC3

DNA

Histone

Figure 4 A model for gene regulation by TR. T3 functions by regulating gene transcription through T3 receptors (TRs). In the absence of T3,
TR/RXR heterodimer binds to TREs in the target genes and recruits corepressor complexes such as the N-CoR-HDAC3 complex. This leads to the
establishment of a repressed chromatin state with ordered nucleosomal arrays and abundant repression marks. When T3 is present, TR/RXR
recruits coactivator complexes such as those containing SRC, p300, and PRMT1. This leads to the loss of nucleosomes and modifications of the
histone tails, leading to gene activation. See [113] for details.
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target genes, which is likely critical for tissue specific
effects of T3 during development. Are different
enzymes recruited by TR in a gene- and tissue-
specific manner during development? Do different
cofactors affect the utilization and function of other
cofactors? While histone modifications have been
correlated with gene regulation, are or how are they
required for gene regulation by T3 and vertebrate
development? The ability to manipulate amphibian
metamorphosis will no doubt ensure that this model
will continue to serve well the mechanistic studies on
TR function in vivo in the foreseeable future, especially
in light of the recent advancement in gene knockout
studies in Xenopus [125,126].
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