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Abstract 

Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in endur‑
ing pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence 
points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role 
in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, con‑
figuration, and performance have been well‑documented. Various disturbances, encompassing alterations in mito‑
chondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process 
of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein 
responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing 
the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets 
namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibil‑
ity to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory 
responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochon‑
dria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been impli‑
cated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, 
metabolic irregularities, and heightened cytokine release, impeding the body’s ability to repair tissues. This review 
provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, 
mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated 
with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculo‑
skeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restora‑
tion of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
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Introduction
Chronic inflammatory musculoskeletal disorders can 
lead to pain and functional impairment, imposing a sub-
stantial physical and economic burden on individual 
patients as well as society overall. Contemporary inves-
tigations have revealed that striated muscles and tendons 
subjected to persistent inflammation manifest deviations 
in both microstructural elements and composition. These 
anomalies encompass diverse features such as calcifica-
tions, fibrocartilaginous transformations, and osseous 
metaplasia. Simultaneously, there is an accompanying 
diminution in both material and structural character-
istics [1]. Consequently, these alterations contribute to 
a notable decrease in the load-bearing capacity of the 
affected tissues [2]. The origin of chronic inflamma-
tory musculoskeletal disorders is intricate, involving a 
myriad of factors. Inherent mechanisms, including the 
alterations in microvascular blood supply, natural aging 
process, trauma, and repetitive overuse, collectively 
contribute to their etiology [3]. Beyond these intrinsic 
elements, oxidative stress emerges as a significant bio-
logical factor implicated in the initiation and progression 
of chronic musculoskeletal inflammation [4]. The patho-
logical mechanisms involved are still under exploration. 
At this stage, more and more scholars are focusing on the 
microstructure of cells, hoping to make a breakthrough.

Skeletal muscle is a biologically active organ that 
requires a sufficient supply of energy to function properly. 
Mitochondria, which produce adenosine triphosphate 

(ATP) through oxidative phosphorylation (OxPhos), are 
instrumental in providing energy for skeletal muscle [5]. 
Musculoskeletal diseases, in comparison, can cause mito-
chondrial defects or abnormalities. Previous research 
has demonstrated that reactive oxygen species (ROS) 
bring about oxidative damage in chronic musculoskeletal 
inflammation, leading to reduced collagen and proteogly-
can synthesis, as well as tendon calcification [6]. ROS can 
trigger and regulate apoptotic processes, making them 
important factors in chronic inflammatory musculo-
skeletal disorders. Under normal circumstances, within 
eukaryotic cells, mitochondria stand as the principal 
wellspring of ROS. Notably, these ROS predominantly 
arise from the activities of complexes I and III within the 
electron transport chain (ETC), a consequence of the 
reaction between oxygen and electrons escaping from 
the respiratory chain [7]. In response to the potential 
onslaught of excessive ROS, mitochondria are equipped 
with an elaborate antioxidant system [8]. This defense 
mechanism encompasses enzymes such as superoxide 
dismutase and glutathione peroxidase, which engage 
with and effectively eliminate ROS. These mitochondria-
located enzymes serve as molecular chaperones, miti-
gating ROS-induced aberrations in protein folding [9] 
(Fig. 1). But this antioxidant balance is collectively regu-
lated by various parameters of mitochondria. Relevant 
studies indicate that factors such as mitochondrial quan-
tity, shape, density, cristae number, and irregularities in 
tissue organization are all associated with the onset and 
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recovery of chronic inflammatory musculoskeletal disor-
ders [10].

Precisely orchestrated reactive oxygen species (ROS) 
generation can be instrumental in fostering muscle repair 
and amplifying muscle contractility. Nonetheless, the 
systemic or persistent presence of oxidative stress proves 
deleterious, prompting the activation of mitochon-
drial quality control (MQC) mechanisms. These include 
mitochondrial fission and subsequent disposal through 
autophagy and proteolysis [11]. Consequently, this cas-
cade of events results in a decline in mitochondrial 
membrane potential, rupture of the outer mitochondrial 
membrane (OMM), mitochondrial swelling, and sub-
stantial structural as well as functional impairments to 
the mitochondria [12]. A summary of existing literature 
reveals that factors influencing mitochondrial function 
encompass defects in mtDNA mutations, mitochondrial 
OxPhos, structural abnormalities, imbalances in  Ca2+ 
levels at the ultra-microscopic level, as well as mito-
chondrial-associated proteins and chaperone proteins. 
Additionally, disruptions in the equilibrium between 
mitochondrial fusion and fission, coupled with com-
promised lysosomal function stemming from impaired 
mitophagy and insufficient biosynthesis, collectively con-
tribute to the onset of mitochondrial damage (Fig.  1). 
Among the above, the most crucial aspects involve three 
key components:  Ca2+ imbalance, persistent opening of 

the mitochondrial permeability transition pore (mPTP), 
and rampant accumulation of ROS. Firstly, disturbances 
in mitochondrial  Ca2+  ([Ca2+]mt) homeostasis could 
instigate  Ca2+-reliant impairment to mitochondrial struc-
ture and performance. The presence of  Ca2+ in the mito-
chondrial matrix proves indispensable for the stimulation 
of oxidative metabolism, as it orchestrates modulation of 
three rate-constraining enzymes within the tricarboxylic 
acid cycle (TCA), referred to as pyruvate dehydrogenase, 
α-ketoglutarate dehydrogenase, and isocitrate dehydro-
genase. Under normal circumstances,  [Ca2+]mt buildup 
is essential to improve cellular processes and mitochon-
drial bioenergetics in reaction to cell stressors. During 
inflammation, as muscle fibers undergo structural fragil-
ity, they become notably permeable to the extracellular 
milieu. This heightened permeability initiates an exces-
sive  Ca2+ influx, initiating lipases and proteases while 
imposing an overburden of intramitochondrial  Ca2+ [13]. 
Subsequently, an excessively elevated  [Ca2+]mt could 
elicit persistent opening of the mPTP [14] (Fig. 1). Two 
consequential repercussions of mPTP opening are esca-
lated ROS genesis and lowered mitochondrial respiratory 
capacity.

The interconnected network comprising  [Ca2+]mt 
homeostasis, ROS generation, ATP synthesis, and respi-
ration has cascading impacts on cellular function. When 
molecular irregularities occur within this network, the 

Fig. 1 Conceptual model and the corresponding underlying mechanisms that elucidate the relationship between the chronic musculoskeletal 
inflammation and the mitochondrial damage. The mitochondrial health and inflammatory levels are represented by a blue and red line, 
respectively. SOD superoxide dismutase, ROS reactive oxygen species, mtDNA mitochondrial DNA, OxPhos oxidative phosphorylation, UPRmt 
mitochondrial unfolded protein response, HSP heat shock protein. Created with BioRender.com
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impact extends beyond the mitochondria, affecting the 
cytoplasm and nucleus with consequential detrimental 
effects [15]. First and foremost among these components 
is mitochondrial DNA (mtDNA), a potent stimulator for 
innate immune response and inflammation, influencing 
broader physiological processes. Under normal circum-
stances, mtDNA is typically enclosed within organelles 
or encapsulated by membrane structures, shielding it 
from recognition by the host cell as foreign material. In 
the context of chronic inflammatory musculoskeletal dis-
orders, such “membrane protective structures” undergo 
disruption, leading to autoimmune and inflammatory 
diseases [16]. Moreover, inflammation-induced ATP 
deficiency prompts a compensatory reliance on cyto-
plasmic glycolysis. This shift results in elevated lactate 
levels, reduced pH, and subsequent manifestations of 
fatigue and compromised excitation–contraction cou-
pling in muscle cells. This interconnected dysfunction 
extends beyond the molecular level, significantly influ-
encing the overall physiological performance of muscle 
cells. Deficiencies in mitochondrial number and function 
hinder fatty acid oxidation, impeding the regenerative 
capacity of muscle cells. This dual effect underscores the 
crucial role of mitochondrial health not only in energy 
metabolism but also in the fundamental processes gov-
erning muscle cell regeneration [17]. Thus, maintaining 
the integrity of this intricate mitochondrial network is 
essential for overall cellular function and physiological 
well-being.

How each of the aforementioned factors operates in 
the development of chronic musculoskeletal diseases, 
and whether it is due to disruption of the endosymbi-
otic relationship between mitochondria and cells, remain 
unknown at present. Reasonable speculations can only 
be made based on existing research. Simultaneously, 
the functionality of mitochondria in such inflammation 
is highly complex, spanning across various hotspots in 
research. In this review, we aim to systematically and 
comprehensively summarize and analyze existing lit-
erature, with a focus on examining the potential changes 
in mitochondrial function and the related mechanisms 
in chronic inflammatory musculoskeletal disorders. 
Additionally, we will explore the influence of mitochon-
dria on the development and modifications of chronic 
inflammation.

Intracellular microenvironment in chronic 
inflammatory musculoskeletal disorders
It is widely recognized that chronic musculoskeletal 
inflammation occurs as a result of significant changes 
in the intracellular environment of skeletal muscle 
cells. These changes involve various metabolites and 
inflammatory molecules. The primary factors closely 

associated with mitochondrial metabolism are unfolded 
proteins and the buildup of fatty acids. These determi-
nants assume a pivotal role in the initiation of inflam-
matory processes, exerting a profound impact on both 
mitochondrial function and cellular metabolism.

Mitochondrial unfolded protein response
Primarily, we have a clear concept that an excess of pro-
tein or the improper folding of proteins can have fatal 
consequences for skeletal muscle cells. Skeletal muscle is 
not as resilient as cardiomyocytes when faced with pro-
tein stress. Therefore, maintaining protein quality control 
is crucial for skeletal muscle cells [18]. In cases of chronic 
inflammation in skeletal muscle, unregulated protein 
aggregation ensues as a consequence of the compro-
mised functionality or excessive demand placed on the 
autophagy–lysosome systems and ubiquitin–proteasome 
(UPS). This cascade of events results in the formation 
of protein aggregates, mitochondrial impairment, the 
accumulation of hyper-ubiquitinated proteins, and the 
initiation of autophagy (Fig.  2a). Collectively, these pro-
cesses ultimately contribute to the induction of muscle 
fibrotic injury [19]. To effectively manage such situations, 
mitochondria have developed a highly efficient disposal 
mechanism, named the mitochondrial unfolded protein 
response (UPRmt).

The UPRmt is a cellular stress response triggered by 
unfolded or misfolded proteins within mitochondria, 
surpassing the capacity of chaperone proteins [20]. Mito-
chondrial proteins are largely encoded in the nucleus 
despite having a small genome itself. Therefore, it is evi-
dent that mitochondrial function, adaptation, and bio-
genesis heavily rely on the import of proteins encoded 
in the nucleus. Notably, the initiation of the UPRmt 
is prompted by an excess of imported proteins or the 
occurrence of misfolded proteins. This activation serves 
as a crucial mechanism to uphold mitochondrial protein 
homeostasis. It is essential to finely regulate and coordi-
nate these mechanisms to prevent proteotoxicity, which 
could otherwise lead to dysfunction in both mitochon-
dria and skeletal muscles. Additionally, the UPRmt mod-
ulates the activity of genes implicated in OxPhos and the 
Krebs cycle. This multifaceted response serves to allevi-
ate mitochondrial stress and strategically adjusts cellular 
metabolism, fostering an environment conducive to cell 
survival [21].

Numerous proteins and genes participate in the regu-
lation of the UPRmt. Currently, a key focus of research 
centers around the heat shock protein (HSP) family, 
recognized for its pivotal part in activating UPRmt. For 
instance, HSP60 assists in facilitating protein folding 
within the mitochondrial matrix. It has been identified 
as a facilitator of enhanced calpain activity, a process 
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integral to protein synthesis, folding, and the trans-
portation of misfolded proteins to proteolytic enzymes 
within the mitochondrial matrix [22]. Remarkably, the 
removal of HSP60 triggers a robust proteotoxic stress 
response, impacting both the mitochondrial matrix and 
the cytoplasm. This deletion impedes the entry of pro-
teins into the mitochondria. HSP70 is another protein 
that participates in this process. Under stressful con-
ditions, both tenocytes and myocytes release HSP70, 
which helps inhibit the activation of NOD-like recep-
tor family pyrin domain containing 3 (NLRP3) inflam-
masome-mediated pyroptosis and maintain a delicate 
equilibrium between regenerative and degenerative 
changes. This observation highlights the potential of 
HSP70 to act as a link in the loop of death and regen-
erative [23]. Even with this nearly flawless system, there 
is still a limit to how many unfolded proteins can be 
processed before the UPRmt collapses, leading to a sig-
nificant depletion of HSPs.

The UPS is the primary protein degradation system 
within cells, often degrading unfolded proteins prior to 
UPRmt. The UPS primarily involves two major processes: 
substrate protein ubiquitination and the subsequent 
degradation of ubiquitin-tagged proteins by the protea-
some [24]. Ubiquitin (Ub) is a 76-amino acid peptide. 
The process of covalently attaching ubiquitin molecules 
to substrate proteins, known as protein ubiquitination 
modification, a cascade catalyzed by ubiquitin-activating 
enzyme E1, ubiquitin-conjugating enzyme E2, and ubiq-
uitin-protein ligase E3. Proteins marked with ubiquitin 
can be recognized by the 26S proteasome, or degraded 
through the autophagy–lysosome pathway, or have the 
ubiquitin tag removed by deubiquitinase (DUB) cataly-
sis, thereby regulating downstream signaling pathways 
[24]. Two ubiquitin E3 ligases, Atrogin-1 and muscle-
specific RING finger protein 1 (MURF1), are well-known 
components of this system. Atrogin-1 primarily targets 
the eukaryotic translation initiation factor 3 subunit F 

Fig. 2 a Under stimulation from chronic inflammation, the mechanisms of UPRmt, autophagy–lysosome system, and ubiquitin–proteasome 
system are activated to clear unfolded proteins. There may be interactions between these systems to coordinate protein quality control processes 
and maintain cellular homeostasis. Questions regarding how these systems coordinate their operations and the activation thresholds remain 
unanswered. b Regulatory pathways of lipid and ferroptosis. Under the influence of chronic inflammation, abnormalities in fatty acid oxidation 
and excessive accumulation of oxidized lipids disrupt iron homeostasis and result in the generation of a large quantity of ROS. Fatty acids, unstable 
iron, and lipids containing PUFAs are key factors in the outbreak of ROS and ferroptosis. The CoQ10 system plays a role in limiting the development 
of oxidative damage. Eventually, the excessive production of ROS can oxidize phospholipids in cell membranes and lipoproteins into hydrogen 
peroxide, leading to programmed cell death. UPRmt mitochondrial unfolded protein response, UPS ubiquitin–proteasome, PINK1 phosphatase 
and tensin homolog‑induced kinase 1, HSP heat shock protein, ROS reactive oxygen species, FFA free fatty acids, PUFA polyunsaturated fatty acids, 
AA arachidonic acid, AdA adrenic acid, LOX lipoxygenase, CoA coenzyme Q10, IP3R inositol 1,4,5‑trisphosphate receptor, PL phospholipids, PL-OOH 
phospholipid hydroperoxides. Created with BioRender.com
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(EIF3F), while MURF1 targets the myosin chain. In mus-
cle cells, the expression of these ligases is modulated by 
the forkhead box O (FoxO) transcription factor [25]. 
When muscle atrophy occurs, decreased activation of the 
protein kinase B family (AKT) promotes the phosphoryl-
ation and translocation of FoxO to the nucleus. This, in 
turn, increases the expression of Atrogin-1 and MURF1, 
instigating the process of proteolysis [26] (Fig.  3). An 
additional investigation highlights an augmentation in 
mitosis during both muscle atrophy and the aging pro-
cess, coinciding with a decrement in lysosomal function 
[27]. This suggests that impairment of lysosomal activ-
ity may contribute to the accrual of impaired mitochon-
dria. As for how the ubiquitin–proteasome system and 
UPRmt collaborate, we currently lack specific research 

evidence (Fig.  2a). However, as chronic musculoskeletal 
diseases progress, enhancing the effects of both systems 
in controlling protein substrates might provide a means 
to inhibit the progression of inflammation.

Fatty acid accumulation and muscle insulin resistance
The process of fatty infiltration has been observed in 
both muscle and tendon tissues in instances of chronic 
inflammatory musculoskeletal disorders. The mecha-
nisms underlying the generation of this fatty infiltra-
tion are currently a matter of diverse opinions, lacking 
a unified perspective. Some speculations can be derived 
from certain research findings. Firstly, certain proteins, 
such as peroxisome proliferator-activated receptor 
γ and fatty acid–binding protein 4, show a significant 

Fig. 3 Simplified diagram of a generalized cell illustrating the activation of the PGC‑1α signaling pathway and the TLR system on the burst 
of cytokines, the damage to mitochondria, and the redox signaling pathway for the induction of mitochondrial biogenesis in response 
to inflammation. TLR toll‑like receptors, NF-κB nuclear factor kappa‑light‑chain‑enhancer of activated B cells, NOS2 nitric oxide synthase 2, NO nitric 
oxide, TNF-α tumor necrosis factor α, CO carbon monoxide, CORM CO‑releasing molecule, FFA free fatty acids, CoA coenzyme A, ROS reactive oxygen 
species, RNS reactive nitrogen species, TCA  tricarboxylic acid, MnSOD manganese superoxide dismutase, EPO erythropoietin, EPOR erythropoietin 
receptor, GC guanylyl cyclases, cGMP cyclic guanosine monophosphate, PKA protein kinase A, CREB cAMP response element‑binding protein, 
pCREB phosphorylated cAMP Response‑Element Binding Protein, NAD nicotinamide adenine dinucleotide, AMP adenosine monophosphate, AMPK 
AMP‑activated protein kinase, mTOR mechanistic target of rapamycin kinase, NRF-1 nuclear respiratory factor 1, PTEN phosphatase and tensin 
homologue, PI3K phosphoinositide 3‑kinase, PDK1 pyruvate dehydrogenase kinase 1, FoxO forkhead box O. Created with BioRender.com
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decrease in tendinopathic tendons compared to intact 
tendons [28]. Secondly, in individuals with Achilles 
tendinopathy, a decrease in the expression of markers 
associated with lipolysis and adiponectin (ADIPOQ) 
has been noted, coupled with an elevation in markers 
related to fatty acid β-oxidation [29]. From the above-
mentioned studies, it is evident that this fatty infiltra-
tion is primarily attributed to the inhibition of native 
tissue protein synthesis, a reduction in fatty acid 
metabolism, and an increase in lipid synthesis.

Turning our attention back to skeletal muscle cells, 
when there is a persistent accumulation of fatty acids, 
cells need to regulate mitochondria for their break-
down in a process known as fatty acid β-oxidation [30]. 
According to our knowledge, there are numerous fac-
tors that can interfere with this process. The break-
down of fatty acids is hindered when there is a decay 
in mitochondrial membrane potential, increased mito-
chondrial mass, abnormal mitochondrial structure, and 
reduced oxygen consumption [31]. Aberrant fatty acid 
oxidation is frequently concomitant with the substan-
tial generation of various oxidative stress products, as 
illustrated in Fig. 3. Particularly, prolonged elevation of 
inflammatory metabolic byproducts, such as lipid per-
oxides, can trigger a form of iron-dependent cell death 
known as ferroptosis [32] (Fig. 2b). Additionally, it stim-
ulates ATP production in mitochondria and induces 
an elevation in mitochondrial ROS. This, in turn, trig-
gers mitochondrial fission and a decrease in fatty acid 
oxidation. Persisting accumulation of lipid substances 
gives rise to another issue, namely, insulin resistance 
[33]. In myocytes, insulin resistance can cause impaired 
insulin signaling, thereby disrupting the entry of glu-
cose into skeletal muscle cells [34]. Consequently, these 
cells undergo degeneration and death under the dual 
influence of bioenergetic changes and oxidative stress, 
exacerbating the spread of inflammation.

A positive correlation has been identified between the 
irregularities in fatty acid oxidation and the explosive 
generation of ROS. Other studies using models of insu-
lin resistance have indicated that increases in muscular 
ROS are produced by sources other than the mitochon-
dria. This is due to the buildup of fatty acids and occurs 
before mitochondrial dysfunction. As a result, there is 
an increase in mtROS production and fragmentation of 
the mitochondria, while their biogenesis decreases [35]. 
While the preceding study offers a somewhat oversim-
plified explanation of the origins of mitochondrial ROS, 
it is indisputable that these results uniformly validate 
the role of lipid metabolism in mitochondrial impair-
ment. This involvement may occur very early and con-
stitute a pivotal factor contributing to the progression 

and refractory nature of chronic inflammatory muscu-
loskeletal disorders.

Positional and structural subtypes of mitochondria 
in chronic inflammatory musculoskeletal disorders
In recent years, as we have delved deeper into the study 
on how mitochondria are distributed and structured, 
we have been amazed by the intricate network of their 
functioning. These organelles are arranged in a well-
organized manner within cells and carry out a variety of 
complex tasks through spatial or functional interactions 
with other nearby organelles or mitochondria. They con-
tinuously adapt their morphology, location, and internal 
structures in response to the external environment. In 
terms of their subcellular localization, skeletal muscle 
mitochondria are distinguished into two main catego-
ries: intra-myofibrillar mitochondria (IFM) and periph-
eral mitochondria (PM) [36]. PM can be further classified 
into subsarcolemmal mitochondria (SSM) and perinu-
clear mitochondria (PNM) (Fig. 4a).

The IFMs, arranged in rows between myofibrils and fill-
ing the space between Z-lines, possess inner membrane 
characteristics that vary significantly based on the energy 
levels of the associated myofibrils [37, 38]. This variability 
in inner membrane features is particularly noticeable in 
healthy conditions, where IFMs typically display curved 
cristae structures. In instances of muscle dystrophy and 
diabetes, the inner membrane of IFMs becomes nota-
bly distorted [39]. In contrast, SSM, characterized by 
variable length and size, can aggregate conspicuously in 
large numbers under specific circumstances [37]. Adding 
another layer of complexity, SSM exhibits variations in 
cristae structure, a feature intricately linked to its meta-
bolic status [40]. On the inner mitochondrial membrane 
(IMM) of these mitochondria, oxidative complexes are 
strategically positioned, and the arrangement of cristae 
facilitates a larger membrane area, contributing to height-
ened ATP production [41]. The density of mitochondrial 
cristae is a nuanced factor, often associated with localized 
energy demand and the overall health of the mitochon-
dria [42]. This sophisticated orchestration within skeletal 
muscle mitochondria provides valuable insights into the 
dynamic relationship between structure, function, and 
the intricate interplay of metabolic demands in maintain-
ing cellular health. Chronic musculoskeletal inflamma-
tion can provoke changes in the morphology and density 
of mitochondrial cristae as well. Research on the specific 
mechanisms of these changes is lacking empirical sup-
port and requires further exploration.

The current body of literature posits that SSM may 
establish physical connections with the IFM network, 
potentially optimizing energy distribution within the 
myocyte. There is evidence suggesting that individual 
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mitochondria from the PM pool can seamlessly merge 
with the IFM complex, depending on the dynamic met-
abolic demands of the myocyte [43]. This interchange-
ability between the two subpopulations underscores a 
sophisticated regulatory mechanism to adapt to varying 
cellular energy requirements. The morphological char-
acteristics, including cristae density, are predominantly 
governed by a delicate balance between mitophagy and 
dynamics, encompassing the rate of fission and fusion. 

This equilibrium is intricately linked to the energy 
needs of the muscle, forming a crucial aspect of cellu-
lar homeostasis [44]. Figure 4b illustrates the intercon-
nected relationship between these processes, shedding 
light on the intricate regulatory mechanisms within 
skeletal muscle mitochondria. Remarkably, SSM exhib-
its a heightened responsiveness to outer cues, display-
ing an increased susceptibility to mitophagy under 
conditions of chronic inflammation, such as sedentary 
lifestyles and metabolic diseases [45].

Fig. 4 a Distribution of different mitochondrial subpopulations in skeletal muscles. In myocyte, the nucleus is clearly surrounded by PNM and SSM 
subpopulations. Myogenic fibers are interspersed with IFM. The IFM is in close physical proximity to the SR, with numerous contact points. b The 
biogenesis of all subpopulations requires the active participation of the nucleus and the production of chromosome‑encoded mitochondrial 
proteins. While the biogenesis of the PNM and SSM is evident, the IFM appears to have a network‑like structure that is well‑suited for dynamic 
activity. The PNM primarily fulfills the energy (ATP) requirements of the nucleus and activates signaling pathways, which in turn activate nuclear 
transcription factors. The IFM is the major subpopulation responsible for providing energy for muscle contraction, while the SSM supplies energy 
to the  Na+–K+‑ATPase positioned on the sarcolemma. The SR is closely related to the IFM in terms of structure and function, with Mfn1 and Mfn2 
playing critical roles in the  Ca2+ cross‑talk between these two organelles. The PNM is intricately linked to the SR in a preferential manner. SR 
sarcoplasmic reticulum, SSM subsarcolemmal mitochondria, PNM perinuclear mitochondria, IFM intra‑myofibrillar mitochondria, ATP adenosine 
triphosphate, ADP adenosine diphosphate, OxPhos oxidative phosphorylation, LTCC  L‑type calcium channel, RyR ryanodine receptor, SERCA  
sarcoplasmic reticulum  Ca2+ ATPase, SLN sarcolipin, MCU mitochondrial  Ca2+ uniporter, VDAC voltage‑dependent anion channel, TCA  tricarboxylic 
acid, NADH nicotinamide adenine dinucleotide, FADH flavin adenine dinucleotide. a Was created with BioRender.com. Copyright of b obtained 
from Portland Press and adapted from Swalsingh et al. [246]
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Metabolically, IFM and SSM showcase distinct meta-
bolic capacities dictated by localized intracellular energy 
demands [37]. Emerging research underscores a tendency 
for SSM to be more susceptible to dysfunction within 
the spectrum of mitochondrial sub-populations [44]. 
The intricate mechanisms governing the configuration 
of the mitochondrial network, particularly the interplay 
between IFM and SSM in skeletal muscle, remain elu-
sive. Nevertheless, understanding the overall dynamics of 
their structural morphology proves crucial for maintain-
ing the hypocellular framework, a foundational aspect of 
muscle health. Beyond structural nuances, SSM and IFM 
exhibit variations in degradation rates, enzymatic com-
ponents, and vulnerability to apoptotic stimulation [46]. 
These differences highlight the potential for each subpop-
ulation to play unique roles in maintaining cellular home-
ostasis. Such distinctive contributions may, in turn, have 
implications for the development of diseases linked to 
muscle metabolism. The enzymatic machinery governing 
substrate metabolism (such as lipid or glucose) under-
goes substantial modifications during various pathophys-
iological states [44]. This underscores the dynamic nature 
of mitochondrial function and its pivotal role in respond-
ing to the evolving metabolic demands associated with 
disease progression. Although we currently lack evidence 
for this, there is no doubt that this network configuration 
mechanism could exert a major regulatory role in chronic 
inflammatory musculoskeletal disorders. We might even 
speculate that the disruption of this mechanism leads to 
uncontrolled inflammation.

Mitochondrial biogenesis in chronic inflammatory 
musculoskeletal disorders
Maintaining mitochondrial homeostasis hinges on a 
delicate equilibrium between opposing processes—mito-
chondrial biogenesis and mitophagy—a dynamic inter-
play critical for cellular vitality [47]. At the epicenter of 
this intricate ballet stands peroxisome proliferator-acti-
vated receptor-gamma coactivator-1 alpha (PGC-1α), 
the master regulatory factor orchestrating mitochon-
drial biogenesis. Serving as a nexus for multiple signaling 
pathways, PGC-1α activates a cascade of events pivotal 
for mitochondrial growth and function.

Upon activation, PGC-1α collaborates with essen-
tial nuclear transcription cofactors, notably nuclear 
respiratory factor-1 (Nrf-1) and -2 (Nrf-2), as well as 
estrogen-related receptor alpha (ERRα) [48]. This col-
laborative effort culminates in the augmentation of 
nuclear-encoded mitochondrial proteins (NEMPs) and 
mitochondrial transcription factor A (TFAM) expression. 
The intricate orchestration of TFAM includes its translo-
cation into mitochondria, where it propels the expression 

of mitochondrial genes, forming a robust foundation for 
biogenesis [49].

The activation of PGC-1α, the linchpin of this process, 
is finely regulated by two vital players: sirtuin 1 (SIRT1) 
and AMP-activated protein kinase (AMPK). As both 
energy sensors and nicotinamide adenine dinucleotide 
(NAD)+-dependent deacetylases, SIRT1 and AMPK 
weave together with PGC-1α in a finely tuned regula-
tory network. This network, sensitive to cellular energy 
status within the context of energy availability, serves 
as a sentinel for orchestrating mitochondrial biogenesis 
and ensuring cellular adaptability [50] (Fig. 3). In essence, 
the dance of PGC-1α, guided by the harmonious inter-
play of Nrf-1, Nrf-2, ERRα, TFAM, SIRT1, and AMPK, 
unfolds as a symphony that intricately balances the scales 
of mitochondrial biogenesis, ensuring the vitality and 
adaptability of the cell.

Even the damage caused by the core product ROS in 
skeletal muscle is primarily counteracted by PGC-1α. 
In other words, PGC-1α is a central coordinator among 
exercise benefits, mitochondrial biogenesis, and ROS 
metabolism. As for how PGC-1α counteracts ROS, it is 
currently believed to increase the production of anti-
oxidant enzymes by regulating the activity of ERRα 
[51–53]. Additionally, it might enhance the expression 
of the SIRT3 gene in mitochondria, thereby increas-
ing the expression and activity of superoxide dismutase 
2 (SOD2) [54]. The underlying mechanisms are not yet 
fully understood. Subsequently, it enhances the ability 
of mitochondria to clear ROS through these pathways. 
When PGC-1α is absent, the levels of ROS scavengers 
like SOD1, SOD2, and glutathione peroxidase 1 (GPx1) 
decrease. Conversely, when PGC-1α is overexpressed 
in muscle, the levels of mRNA for SOD2 increase [54]. 
Henceforth, it is imperative for muscle tissues to uphold 
a baseline of ROS while simultaneously leveraging these 
molecules as signaling agents. This dual role serves to 
augment mitochondrial metabolism, fortify the integrity 
of the mitochondrial network against potential harm, and 
mitigate the adverse repercussions that may transpire 
over prolonged periods [55].

Specifically speaking, the intricate interplay of PGC-1α 
in cellular responses extends its influence into the realm 
of inflammatory processes, where it emerges as a pivotal 
orchestrator. Notably, instances of inflammation witness 
a noteworthy reduction in PGC-1α levels, thereby inten-
sifying the overall inflammatory response [56, 57]. The 
specific molecular intricacies underlying PGC-1α down-
regulation during inflammation remain elusive; neverthe-
less, the unequivocal involvement of the nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
signaling pathway in this regulatory cascade is apparent. 
At a mechanistic level, PGC-1α governs proinflammatory 
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cytokine levels by directly interacting with the p65 NF-κB 
subunit [58, 59]. This intricate interplay impedes NF-κB’s 
transcriptional capabilities, including the expression of 
genes responsible for proinflammatory cytokines. In the 
context of skeletal muscle, the absence of PGC-1α pre-
cipitates elevated expression levels of tumor necrosis 
factor α (TNF-α), Interleukin 6 (IL-6), and CD68 [60]. 
Conversely, the presence of PGC-1α functions as a regu-
latory counterforce, curtailing the surge in proinflamma-
tory cytokine expression triggered by TNF-α, toll-like 
receptors (TLR) agonists, and saturated free fatty acids in 
C2C12 muscle cells [61].

Taken together, the intricate orchestration of optimal 
biogenesis culminates in the generation of robust and 
healthy mitochondria—a phenomenon prominently evi-
denced during physical exercise. Conversely, the presence 
of inflammatory diseases serves as a significant impedi-
ment to the biogenetic process, fostering the creation of 
compromised and unhealthy mitochondria. In instances 
of metabolic disorders, there is a discernible reduction 
in both biogenesis and fusion processes, underscoring 
the pervasive impact on mitochondrial health within this 
pathological context.

Mitochondrial dynamics in chronic inflammatory 
musculoskeletal disorders
Mitochondrial dynamics encompass the dynamic altera-
tions in the size, shape, and distribution of mitochondria, 
intricately intertwined with fundamental cellular biologi-
cal and metabolic processes. The perpetual adaptation of 
mitochondria to their surroundings involves a continu-
ous process of fission and fusion. This dynamic interplay 
not only includes the fusion and fission of organelles 
but also entails membrane remodeling, playing a cru-
cial role in the elimination of aging and damaged mito-
chondria [62]. The delicate equilibrium of mitochondrial 
dynamics can be perturbed by various factors, includ-
ing excessive ROS [63], disruptions in  Ca2+ homeostasis 
[64], and active participation in cellular processes such 
as autophagy [65], mitophagy [66], and apoptosis [67]. 
The orchestration of these dynamic processes reflects the 
mitochondria’s responsiveness to cellular cues.

A pivotal determinant in the preservation and adap-
tation of the mitochondrial network lies in achieving a 
delicate equilibrium between two essential processes: 
mitochondrial fission and fusion. Mitochondrial fis-
sion serves to break apart and isolate dysfunctional seg-
ments of the network, paving the way for their selective 
degradation. On the other hand, mitochondrial fusion 
enhances network connectivity, fostering the exchange 
and sharing of mitochondrial components. This collabo-
rative interplay aims to boost mitochondrial efficiency 
and overall functionality.

Mitochondrial fusion
The precise coordination of mitochondrial fusion hinges 
on the intricate regulation of three pivotal proteins: mito-
fusin 1 (Mfn1), mitofusin 2 (Mfn2), and Optic Atrophy 
1 (Opa1). Both Mfn1 and Mfn2, integral members of the 
dynamin-related family of large guanosine triphosphate 
hydrolases (GTPases), share a structurally analogous 
composition and find their residence within the OMM 
[68]. In contrast, Opa1 is embedded in the inner mito-
chondrial membrane (IMM) [68]. A standout among the 
components constituting the Mitochondria-associated 
membrane (MAM) is Mfn2, renowned for its pivotal role 
in fine-tuning MAM structure [69]. In the specific con-
text of skeletal muscle, empirical evidence substantiates 
the active involvement of Mfn2 in mediating interactions 
between mitochondria, strategically positioning them in 
proximity to the sarcoplasmic reticulum (SR) [70] (Fig. 1).

Mitochondrial fusion emerges as an indispensable 
process, playing a vital role in preserving mitochondrial 
DNA integrity, sustaining mitochondrial respiration, 
regulating  Ca2+ signaling, and maintaining mitochon-
drial membrane potential—collectively pivotal for cel-
lular health and optimal functionality [68]. The targeted 
elimination of Opa1 in skeletal muscle sets in motion a 
cascade of deleterious effects, including mitochondrial 
dysfunction, heightened oxidative stress, endoplasmic 
reticulum (ER) stress, and inflammation [71]. Nota-
bly, Opa1 deficiency triggers the release of Fibroblast 
Growth Factor 21 (FGF21) from skeletal muscle, initiat-
ing shifts in lipid balance, inflammatory responses, and 
tissue senescence [72]. These findings underscore the 
indispensable role of Opa1 in upholding mitochondrial 
homeostasis. The role of Mfn2 in the development of 
chronic inflammation is more pronounced. In a study on 
osteoarthritis, researchers found a significant increase 
in the expression of Mfn2 in chondrocytes. Knocking 
down Mfn2 with siRNA reversed age-related metabolic 
changes in chondrocytes. Overexpression of MFN2 exac-
erbated the progression of inflammation, while knocking 
out MFN2 improved it [73]. This suggests that moder-
ate expression of Mfn2 is crucial for controlling chronic 
inflammation. Effective control of Mfn2 expression may 
thus become a promising research direction for the treat-
ment of chronic musculoskeletal diseases.

Mitochondrial fission
Mitochondrial fission, orchestrated primarily by Dynamin-
related Protein 1 (DRP1), is a dynamic process critical for 
cellular homeostasis. DRP1 translocates from the cytosol 
to the OMM and binds with regulatory proteins such as 
Mitochondrial Fission 1 (FIS1), Mitochondrial Fission Fac-
tor (MFF), MID51, and Mitochondrial Dynamics Protein of 
49 kDa (MID49) [74]. This binding initiates the formation 
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of DRP1 oligomers, driving mitochondrial fission. This 
process segregates damaged mitochondria for subsequent 
mitophagy and facilitates mitochondrial redistribution 
during cell division, as illustrated in Fig. 1 [68].

The consequences of mitochondrial fission extend to 
mitochondrial function, impacting membrane potential, 
respiration, and ATP production [74]. DRP1’s role in skel-
etal muscle dynamics is evident in studies showing that 
Drp1 overexpression impairs skeletal muscle growth [75], 
while Drp1 deletion or insufficient expression leads to a 
significant 40–50% atrophy [64, 76]. These findings high-
light DRP1’s pivotal regulatory role in shaping skeletal 
muscle development and maintenance.

An excessive prevalence of fission is linked to metabolic 
dysfunction within skeletal muscle. When DRP1, the pro-
tein responsible for mitochondrial fission, is expressed 
abnormally, it results in the production of hydrogen perox-
ide  (H2O2) induced by ceramide, and this in turn impairs 
mitochondrial bioenergetics [77].

The balance between fission and fusion is crucial for 
maintaining mtDNA, advancing the cell cycle, regulat-
ing metabolism, and producing ATP under normal con-
ditions. The rapid changes in mitochondrial shape that 
occur after depolarization are not caused by fission, but 
rather by a reorganization of the IMM. Consequently, the 
mitochondria take on a donut-shaped, toroidal, or circu-
lar appearance [78–81]. In the process of toroid formation, 
the integrity of the OMM remains intact, while the IMM 
undergoes substantial reorganization, with the assistance 
of the IMM protease OMA1 [78]. Notably, the formation 
of toroids is not contingent on actin and, conversely, is 
hindered by its presence [80, 81]. It is imperative to under-
score that damaged mitochondria possess the ability to 
undergo splitting, contributing to their subsequent removal 
through the process of mitophagy [82, 83]. This splitting 
event might not occur immediately following depolari-
zation. Emerging evidence indicates that mitochondrial 
fission takes place at a later stage, concurrently with the 
assembly of autophagosomes and, notably, independently 
of DRP1 in specific mitophagy scenarios [84]. Consider-
ing this perspective, along with the mechanism described 
above, chronic inflammatory diseases may interfere with 
the splitting process and promote a high rate of mitochon-
drial splitting during ultra-endurance activities. This would 
ultimately worsen the stress response of the mitochondria 
and ER, disrupting the overall system’s balance.

Mitochondrial autophagy and chronic 
inflammatory musculoskeletal disorders
The optimal functioning of skeletal muscle relies sig-
nificantly on the quantity of mitochondria present. This 
mitochondrial content depends on the balance between 
creating new mitochondria through mitochondrial 

biogenesis and getting rid of damaged components 
through mitophagy [85]. These two processes regulate 
the quality and quantity of mitochondrial content in the 
cell, ultimately establishing an equilibrium that deter-
mines mitochondrial density.

Apoptosis has been considered a key feature of chronic 
inflammatory musculoskeletal disorders and is associated 
with mitochondrial pathways [86]. Autophagy represents 
a fundamental intracellular degradation mechanism 
functioning through lysosomes (Fig. 1). Mitochondria are 
essential in autophagy by serving as a substrate for degra-
dation [87]. The autophagic machinery serves as a specific 
shield for them, ensuring sustained energy production 
during inflammation [88]. The interplay between stress 
response and mitochondria centered around autophagy 
is two-fold. Mitochondrial autophagy can remove dam-
aged but intact mitochondria. Under normal conditions, 
autophagy supports cell renewal, repairs damaged cells 
[89], and actively participates in cellular differentia-
tion and development [90]. The process of myogenesis 
involves the crucial step of eliminating underdeveloped 
mitochondria, which can aid in the restructuring of a 
more mature mitochondrial complex. Beyond contribut-
ing to the establishment of a sophisticated mitochondrial 
structure, this process is instrumental in mitigating stress 
signaling. Additionally, the selective removal of dysfunc-
tional mitochondria is paramount for preserving the 
optimal function of skeletal muscle, acting as a preven-
tive measure against cellular death.

The mitophagy pathways for removing dysfunc-
tional mitochondria can be classified into two main 
forms [91]. (A) In the Parkin-dependent mitophagy 
pathway, the stabilization of phosphatase and tensin 
homolog-induced kinase 1 (PINK1) on the OMMs ini-
tiates the recruitment of Parkin. This recruitment pro-
cess involves modifications such as ubiquitination and 
phosphorylation of Parkin and ubiquitin (Fig.  2a). A 
variety of OMM proteins, such as Mfn1, Mfn2, voltage-
dependent anion channel (VDAC), Tom20, and Miro, 
are polyubiquitinated by Parkin during mitophagy. 
Subsequently, these ubiquitinated proteins are identi-
fied by various adaptors, triggering the recruitment of 
an autophagosome and the subsequent degradation of 
the mitochondrion. Following ubiquitination, multi-
ple adaptors recognize these modified proteins, facili-
tating the recruitment of an autophagosome for the 
subsequent degradation of the mitochondrion. (B) In 
the Parkin-independent mitophagy pathway, specific 
mitochondrial proteins, including B-cell lymphoma-2 
interacting protein 3 (BNIP3), Nix, NDP52, and FUN14 
domain-containing 1 (FUNDC1), function as receptors 
orchestrating the process of selective mitochondrial 
degradation. These proteins the mobilization of the 
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autophagosome in proximity to the designated cargo. 
Benson et al. reported an increase in BNIP3 in degener-
ative rotator cuff tendon [92], implying a potential link 
between apoptosis triggered by mitochondrial dysfunc-
tion and the progression of chronic inflammatory mus-
culoskeletal disorders.

In addition, ROS appears to wield a substantial influ-
ence on autophagy [93], particularly in the context of 
hypoxia-induced mitochondrial autophagy, where the 
regulatory oversight is attributed to the protein kinase 
AMP-activated catalytic subunit alpha 2 (PRKAα2) 
[94]. Under normal conditions, the levels of mitophagy 
decrease significantly [95]. A decline in mitophagy has 
the potential to exacerbate the detrimental loop of 
abnormal oxidative stress, thereby amplifying inflam-
mation-associated tissue damage [96].

It is noteworthy that the deletion of Mfn2 in skele-
tal muscle not only diminishes the capacity to regulate 
autophagy but also hampers the activation of mito-
chondria. The ablation of Mfn1/2 in skeletal muscle 
precipitates an increase in mtDNA mutations and sub-
sequent tissue atrophy [97]. Specifically, during chronic 
inflammation, both autophagy and mitophagy decrease, 
causing a buildup of dysfunctional mitochondria. When 
casein kinase-2 (CK2) is specifically removed in skel-
etal muscle, it results in a decrease in PINK import to 
the IMM. This leads to an increase in autophagosomes 
associated with mitochondria, which cannot fuse with 
lysosomes, ultimately blocking mitophagy.

In recent investigations, numerous studies have 
underscored the pivotal contribution of various pro-
teins, such as Dystrophia myotonica 1 protein kinase 
A (DMPK-A), to the realm of inflammatory mito-
chondrial autophagy [98–102]. For instance, DMPK-
A, identified within mitochondria, assumes a critical 
role in maintaining optimal muscle fiber function and 
differentiation by functioning as an antioxidant and 
anti-apoptotic agent [103]. Its interaction and accumu-
lation on the OMM induce structural and morphologi-
cal alterations in mitochondria, ultimately prompting 
autophagic processes [104]. The levels of mitophagy-
associated proteins, including Parkin, PINK1, BNIP3, 
and microtubule-associated protein 1 light chain 3 beta 
(MAP1LC3β), exhibit fluctuations in chronic inflam-
matory musculoskeletal disorders, thereby instigating 
mitochondrial degradation. While the precise mecha-
nisms remain incompletely elucidated, it is evident that 
these proteins wield significant influence in orches-
trating the progression of chronic inflammatory mus-
culoskeletal disorders. Importantly, regulating their 
expression can help alleviate mitochondrial stress 
responses to some extent and inhibit programmed cell 
death.

Mitochondrial bioenergetics and oxidative stress 
in chronic inflammatory musculoskeletal disorders
The primary function of mitochondria is to furnish skel-
etal muscle cells with the essential energy needed for 
their metabolic activities. They are responsible for vari-
ous biosynthetic and catabolic processes. One of their 
key functions is to produce ATP through cellular respi-
ration and metabolic regulation. In the intricate milieu 
of each mitochondrion, ATP is synthesized through the 
amalgamation of fatty acids, sugars, and amino acids with 
oxygen. The principal processes governing ATP produc-
tion encompass the OxPhos and citric acid cycle. Dur-
ing OxPhos, electrons undergo a transfer from NADH 
to oxygen (O2), traversing through OxPhos complexes 
I to IV. The Krebs cycle, situated in the mitochondrial 
matrix, constitutes a crucial phase in this energy-produc-
ing cascade. Through this cycle, ATP is generated along 
with, NADH, flavin adenine dinucleotide  (FADH2), and 
carbon dioxide (CO2) [105]. An elevated ratio of ATP 
to adenosine diphosphate (ADP) and NADH to NAD+ 
fosters an anabolic environment, facilitating the efflux of 
metabolites and steering metabolism away from oxygen-
independent glycolysis toward biosynthesis [106, 107]. 
In situations where OxPhos is compromised, as observed 
in chronic inflammatory diseases, the accumulation of 
NADH ensues, thereby diminishing the pool of available 
NAD+. This state of reductive stress prompts a metabolic 
shift towards mitochondrial anabolic pathways, contrib-
uting to the propagation and advancement of inflamma-
tion [108].

On the other hand, during inflammation, there is 
an increase in mitochondrial glutamine breakdown, a 
decrease in the CoA pool, and an increase in succinate 
generation, leading to the export of succinate into the 
cytoplasm through dicarboxylate carriers [109]. Once in 
the cytoplasm, it can affect the activity of α-ketoglutarate-
dependent dioxygenases, crucial for activating factors 
such as hypoxia-inducible factor 1α (HIF-1α) and IL-1β 
[110]. These mitochondrial metabolites have the poten-
tial to alter DNA and histone methylation, serving as 
potential epigenetic signals. In addition to these meta-
bolic signals, there is a well-recognized metabolic shift 
known as the Warburg effect [111]. Its fundamental prin-
ciple involves increasing flux through glycolysis and the 
pentose phosphate pathway to provide more metabolic 
intermediates for cell growth. This shift is not necessarily 
indicative of mitochondrial dysfunction, as most inflam-
mations require mitochondrial activity [111, 112].

In living organisms, various reactions, both spontane-
ous and catalyzed by enzymes, can produce  O2−. These 
reactions encompass various sources, including the 
mitochondrial ETC, the plasma membrane-associated 
NADPH oxidase complex (NOX), the cytosolic xanthine 
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oxidase, and the cytochrome P450 monooxygenases, pre-
dominantly located in the ER [113]. Despite their poten-
tial for inducing harm, ROS such as superoxide  (O2−) and 
its derivatives, particularly  H2O2, function as signaling 
molecules. They play integral roles in diverse biological 
responses, including cell proliferation, differentiation, 
and migration [114]. Accumulating evidence suggests 
that the rapid production of ROS, such as  H2O2 and  O2−, 
constitutes a crucial aspect of the defense mechanism 
against pathogens [115–117]. A certain concentration of 
ROS must be maintained in healthy skeletal muscle cells 
as a crucial signaling molecule and regulator between 
organelles [118]. There is a perspective suggesting that 
the elevation of mitochondrial ROS can serve as a mech-
anism to eliminate bacteria and viruses within cells [119]. 
Besides  H2O2, other mitochondrially-derived molecules 
like the TCA cycle intermediates succinate and fumarate 
have emerged as potent inflammatory signaling factors 
[120, 121]. Succinate stabilizes HIF-1α in tumors and 
activated macrophages, inducing a pro-inflammatory 
transcriptional response [121]. It can stimulate dendritic 
cells via the succinate receptor SUCNR1 [121]. These 
metabolites can post-translationally modify proteins, 
expanding their signaling repertoire [122]. Superoxide 
does not easily pass through cell membranes and tends 
to accumulate within cells. Therefore, relying on super-
oxide dismutase (SOD) for scavenging is often necessary. 
In contrast,  H2O2 stands out as a neutral and more sta-
ble counterpart, exhibiting the distinctive ability to freely 
traverse membranes. This inherent property renders 
 H2O2 a more versatile and adaptable signaling molecule 
in cellular communication and signaling cascades [123]. 
Intriguingly, mitochondria can selectively release various 
factors like proteins, nucleic acids, lipids, and metabo-
lites into the cytosol, triggering cell death, innate immu-
nity, and inflammation [124]. This regulated breakdown 
of the ancient endosymbiotic relationship enables mito-
chondria to act as intracellular signaling hubs, potentially 
contributing to inflammatory disease pathogenesis when 
dysregulated [124].

SOD, an enzyme ubiquitously present in various organ-
isms and situated within the mitochondrial matrix, helps 
convert superoxide into hydrogen peroxide and oxygen. 
The loss of SOD activity, therefore, can lead to heightened 
oxidative damage, manifesting as DNA breakage, protein 
carbonylation, and membrane lipid peroxidation [125, 
126]. This suggests that not effectively removing inter-
nally generated superoxide can be harmful. Aside from 
the harmful effects of superoxide itself, it can interact 
with nitric oxide to form peroxynitrite (ONOO−), which 
is another toxic substance [127]. Decomposing ONOO− 
can produce highly reactive species like OH,  NO2, and 
 CO3− [128]. SOD stands as the exclusive entity capable 

of averting the formation of ONOO− by effectively neu-
tralizing  O2−. Inhibiting SOD reduces the ability to neu-
tralize superoxide radicals, which can then cause damage 
to mitochondrial components and eventually lead to 
mitochondrial dysfunction. In a murine model investi-
gating supraspinatus tendinopathy, researchers noted a 
substantial reduction in both SOD gene expression and 
activity. Intriguingly, upon the alleviation of subacromial 
impingement, a converse trend emerged, showcasing an 
evident increase in SOD activity [10]. From the experi-
ments described above, it can be observed that chronic 
inflammation stimulation leads to a significant decrease 
in SOD activity. While the influence of inflammation 
cannot entirely account for the changes in SOD, it is 
undeniable that if this stimulation persists, SOD activity 
will not recover, accompanied by irreversible loss of mus-
cle tissue function.

Based on these recent studies, it is suggested that dam-
aged mitochondria could initiate and activate the inflam-
matory process, which may hinder the resolution of the 
typical post-injury inflammatory response. This could 
result in the development of chronic diseases [129]. 
Additionally, numerous animal and human studies have 
indicated a decline in mitochondrial content as individu-
als age, including a reduction in number, density, and 
size [130], as well as decreased mitochondrial DNA and 
protein expression [131]. These mitochondrial impair-
ments can lead to a decrease in ATP production [132], 
mitochondrial respiration [133], and an increase in ROS 
production [134]. It has been reported that elderly indi-
viduals experience a diminished maximal ATP flux in 
both their gastrocnemius and soleus muscles [135]. This 
could potentially explain why the elderly are more sus-
ceptible to chronic inflammatory musculoskeletal disor-
ders that are challenging to manage.

Mitochondria‑related cytokines and chronic 
inflammatory musculoskeletal disorders
Mitochondria that are impaired or dysfunctional emit 
signals known as mitochondrial-derived damage-
associated molecular patterns (mito-DAMPs). These 
signals are recognized in a similar way as bacterial con-
stituents (PAMPs) by the innate immune system. They 
are involved in the release of cytokines and the recruit-
ment of inflammatory cells after injury [136]. Upon the 
compromise of skeletal muscle integrity, mitochondria 
instigate an acute inflammatory response that is essen-
tial to the regeneration of myofibrils. But excessive 
signaling from dysfunctional mitochondria can have a 
negative impact on muscle outcomes. Notably, instances 
such as cyclic stretching of human tenocytes elevate the 
synthesis of inflammatory mediators like prostaglan-
din E2 (PGE2) and leukotriene B4 (LTB4) [137], crucial 
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contributors to the onset of chronic inflammation [138].
The unrestrained release of mito-DAMPs exacerbates 
pro-inflammatory mechanisms at the injury site, imped-
ing adaptive responses to oxidative stress and hampering 
the recovery of functional muscle.

Mito-DAMPs, arising from compromised mitochon-
drial function, significantly amplify a sustained inflam-
matory milieu marked by anomalous cytokine release 
at the injury site [6]. Although the specific cytokines 
exacerbating muscle stress factors are not yet fully elu-
cidated, a comprehensive retrospective analysis of gene 
expression underscores substantial elevations in key 
cytokines—IL-6, IL-1β, chemokine C-X-C motif ligand 
1 (CXCL1), and monocyte chemoattractant protein 1 
(MCP-1)—in response to diverse muscle injuries. This 
heightened cytokine profile, identified through a meld-
ing of advanced scholarly findings, emerges as a crucial 
regulatory nexus influencing mitochondrial function and 
playing multifaceted roles in facilitating optimal muscle 
recovery. When their levels become abnormal, they can 
disrupt the healing process by exacerbating mitochon-
drial dysfunction. Another study has demonstrated that 
introducing intact mitochondria from an external source 
can protect tenocytes against TNF-α-induced dam-
age and collagenase-induced tendinopathy [139]. Mito-
chondrial transplantation exerts an inhibitory effect on 
NF-κB signaling, concurrently diminishing the expres-
sion of pro-inflammatory markers (IL-6 and IL-1β) [140]. 
This further highlights that healthy mitochondria can 
effectively regulate and counterbalance the release and 
expression of inflammatory factors, thereby interrupting 
the spread of chronic inflammation to some extent.

Chronic inflammatory musculoskeletal disorders com-
monly occur in an area called the “critical zone” where 
there is not enough blood supply, leading to incomplete 
healing [141]. For instance, in this hypoxic environment, 
the hypoxia-inducible factor subunit alpha (HIF1α) is 
increased [92]. Oxygen deprivation induces mitochon-
drial dysfunction, inflammation, and alterations in the 
metabolic profile, primarily attributed to heightened oxi-
dative stress [142]. Hypoxia triggers the activation of the 
Na+/Ca2+/Li+ exchanger (NCLX), resulting in a notable 
two- to threefold surge in mitochondrial matrix Na+. 
This elevated sodium concentration engages with IMM 
phospholipids, instigating a reduction in membrane flu-
idity and culminating in the generation of superoxide 
through semiquinone [143]. Hypoxia plays a critical role 
in tendinopathy by causing inflammation and cell death. 
Various transcription factors, including NF-κB [144], 
tumor protein p53 (TP53) [145], and HIF1α [146], intri-
cately govern abnormal oxidative stress, contributing 
to heightened expression of chemokines, inflammatory 
cytokines, growth factors, and cellular cycle controllers. 

Additionally, heightened oxidative stress exerts inhibi-
tory effects on the AKT/mechanistic target of rapamycin 
kinase (mTOR) signaling pathway, a pivotal controller of 
the cellular cycle and protein biosynthesis, culminating 
in muscle atrophy [93] (Fig. 3). Noteworthy is the pivotal 
role of HIF1α, responsible for oxygen sensing and modu-
lated by oxygen accessibility and alarmins [147]. Hypoxia 
induces the translocation of HIF1α into the nucleus in 
isolated macrophages [148], signifying that HIF1α stim-
ulation leads to mitochondrial dysfunction, marked by 
heightened levels of mitochondrial mass, mitochondrial 
membrane potential, and ROS. In contrast, the insu-
lin-like growth factor 1 (IGF1)–AKT–mTOR pathway 
emerges as the principal signaling cascade regulating 
muscle mass and protein biosynthesis. Activation of this 
pathway substantiates an increase in muscle mass [149]. 
Striated muscle actively produces myokines, amplifying 
responsiveness to insulin, refining glucose metabolism, 
regulating carbohydrate and lipid metabolic processes, 
and exerting considerable influence on bioenergetics and 
inflammatory responses [150].

In addition to the targets and pathways mentioned 
above, mtDNA can directly trigger the onset of an inflam-
matory factor storm. A recent proposition by Shadel et al. 
posits that mtDNAs play a dual role, not only serving as 
contributors of nucleic acid and OxPhos components but 
also functioning as vigilant guardians detecting genomic 
damage stress and other adversities [151]. In chronic 
inflammatory musculoskeletal disorders, notable muta-
tions have been detected in mtDNA, encompassing point 
mutations within protein-coding regions and mt-transfer 
RNA (mt-tRNA) genes, influencing the synthesis of mito-
chondrial proteins. Furthermore, substantial deletions in 
mtDNA have been observed [152]. This observation sug-
gests that the diverse mtDNA genomes within individual 
cells may serve as a reservoir of signaling molecules. The 
pathogenicity of mtDNA mutations may be linked to a 
threshold effect and is associated with serum inflam-
matory markers [153]. Importantly, mtDNA directly 
activates the NLRP3 inflammasome and leads to IL-1β 
production [154]. Inflammation induced by IL-1β has 
been shown to reduce Mfn1 expression while increasing 
the level of DRP1 is elevated [155]. mtDNA has under-
gone continuous evolution marked by the accrual of 
mutations, giving rise to geographically distinctive and 
prevalent mtDNA polymorphisms referred to as mtDNA 
haplogroups. These haplogroups exert a significant influ-
ence on essential cellular functions, such as ROS produc-
tion, bioenergetic output, utilization of oxygen, and the 
regulation of mitochondrial genes [156]. Substantial evi-
dence now supports the idea that the occurrence, onset, 
and advancement of chronic musculoskeletal inflamma-
tion exhibit variations contingent on distinct mtDNA 
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haplogroups prevalent in diverse populations [157, 
158]. Besides mtDNA, mito-DAMPs such as mitochon-
drial N-formyl peptides (NFPs) are detected in trauma 
patients’ blood circulation at high levels, too. These pep-
tides engage with high-affinity formyl peptide receptors 
(FPRs), eliciting the recruitment of neutrophils [136].

Inflammatory factors have a direct or indirect impact 
on both satellite and non-satellite muscle cells [159–161]. 
These cells are influenced by pro-inflammatory signal-
ing, which can contribute to muscle dysfunction. They 
serve as a buffer against inflammation, to some extent, 
by reducing its spread [162]. Excessive inflammation 
can severely hinder the mitochondrial functionality in 
satellite cells, leading to compromised myogenic mech-
anisms and diminished muscle specialization [162]. 
Our understanding of the mechanisms underlying this 
aspect remains limited. Perhaps future breakthroughs 
in research within this domain could serve as the key 
to controlling the spread of inflammatory processes in 
the musculoskeletal system. Muscle progenitors, along-
side auxiliary cells like fibroblasts, fibroblast precursors 
(FAPs), and pericytes associated with blood vessels, assist 
in orchestrating the synthesis of the extracellular matrix 
(ECM). This intricate network provides a foundational 
scaffold, fostering the renewal of satellite cells and facili-
tating the differentiation of muscle cells. The production 
and regulation of this ECM are influenced by cytokines 
and immune cells.

Mitochondrial vesicle, associated membrane, 
and chronic inflammatory musculoskeletal 
disorders
The mitochondrial membrane structure and associated 
extracellular vesicles (EVs) are the physical basis for all 
its biological activities and functions. Through changes 
in membrane structure, molecular exchanges with other 
organelles and various signals are transmitted. This sign-
aling is manifested not only in the delivery and manip-
ulation of instructions, but also in coordination and 

regional division of work. This is particularly evident in 
the development of chronic inflammatory musculoskel-
etal disorders.

Mitochondrial vesicle
Recently, there has been a growing body of evidence 
suggesting that specific subpopulations of extracellular 
vesicles (EVs) contain a wide range of mitochondrial con-
tents. These vesicles, known as mitochondrial-derived 
vesicles (MDVs), are estimated to be around 70–150 nm 
in size. Observations have revealed that MDVs possess 
the capacity to transport mitochondrial components, 
exerting a discernible influence on the cellular metabolic 
milieu and phenotypic expressions of target cells [163].

MDVs are discharged into the extracellular milieu 
primarily through two pathways: the multivesicular 
endosomes/bodies (MVBs) mediated pathway and the 
micro-vesicle pathway. While the specifics of this process 
require further clarification, MDVs exhibit the propen-
sity to amalgamate with MVBs and subsequently coa-
lesce with the plasma membrane, potentially implicating 
OPA1 and SNX9 [164]. These vesicles may undergo liber-
ation through the micro-vesicle pathway. This liberation 
mechanism can manifest either in a mitophagy-depend-
ent or mitophagy-independent manner, featuring the 
participation of LC3 and the arrestin domain-containing 
protein 1 (ARRDC1) as illustrated in Fig.  5a [165]. The 
liberated EVs are subsequently internalized by recipient 
cells through a series of intricate processes, including 
interactions between ligands and receptors, endocytosis, 
or direct fusion with the plasma membrane. For example, 
MDVs enriched in damaged mitochondria, when taken 
up by target cells, exhibit pro-inflammatory properties 
and stimulate TNF and type I Interferons (IFN) signaling 
in endothelial cells [166], whereas mitochondria that are 
phagocytosed by macrophages merge with the existing 
mitochondrial network and enhance respiration [165].

Correspondingly, under conditions of stress, it is prob-
able that the selective incorporation of mitochondrial 

Fig. 5 Sorting mechanisms and biological effects of MDVs. a Sorting mechanism of donor cells. Damaged tissues under stress release MDVs 
containing damaged mitochondria, ATP, and mtDNA. These MDVs can be sorted to lysosomes via PINK1/Parkin, Tollip, or STX17, to peroxisomes 
via Vps35 and MAPL, or to the extracellular space via OPA1, SNX9, DRP1, or PINK1. In some cases, MDVs budding from damaged mitochondria 
may fuse into MVBs, which are then released into the extracellular space. b MDVs carrying oxidized or damaged mitochondrial contents can be 
taken up by recipient cells or mitochondria through ligand‑receptor interactions, endocytosis, or direct plasma membrane fusion. This uptake can 
affect mitochondrial function and bioenergetics in these cells. The contents of such MDVs can have different downstream regulatory effects, such 
as mitochondrial biogenesis (e.g., AMPK, PGC‑1α), mitochondrial respiration, and bursts of mtROS generation, which mediate cellular phenotypes 
in recipient cells. MDVs have immunomodulatory roles, including inducing pro‑inflammatory signaling in immune cells, cytokine release, IFN 
response, and phagocytosis in immune cells. MDVs mitochondrial‑derived vesicles, ATP adenosine triphosphate, mtDNA mitochondrial DNA, MVBs 
multivesicular endosomes/bodies, AMPK AMP‑activated protein kinase, ROS reactive oxygen species, IFN interferon, TNF-α tumor necrosis factor α, 
OCR oxygen consumption rate, PPAR peroxisome proliferator‑activated receptor, UCP1 uncoupling protein 1, DAMPs damage‑associated molecular 
patterns. (Copyright obtained from Wiley Periodicals and adapted from Zhou et al. [247])

(See figure on next page.)
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contents into MDVs will be promoted, such as oxida-
tive stress [164], remote ischemic preconditioning [167], 
hypoxia [168], lipopolysaccharide (LPS) [169], and heat 
stress [169]. Additional investigation is warranted to 
ascertain the impact of these factors on MDVs released 

into the extracellular space. The liberation of EVs con-
taining depolarized mitochondria from donor cells 
experiencing oxidative stress or injury is orchestrated 
through the ARRDC1 pathway [165]. Notably, myo-
tubes subjected to iron chelation treatment exhibited an 

Fig. 5 (See legend on previous page.)
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amplified sorting of impaired mitochondrial fragments 
into EVs [170]. This phenomenon persisted irrespective 
of the inhibition of autophagy or mitophagy [170]. This 
finding reveals the significance of the ARRDC1 pathway 
in mediating the release of EVs harboring compromised 
mitochondrial elements, a process that appears resil-
ient to autophagic and mitophagic interventions. An 
increase in mitochondrial Lon-induced ROS can trigger 
mtDNA damage (Fig. 5b). Fascinatingly, the conveyance 
of mitochondria through EVs has been demonstrated 
to reinstate mitochondrial function within recipient 
cells. Specifically, activated platelets exhibit the abil-
ity to transmit mitochondria proficient in respiration to 
mesenchymal stem cells (MSCs), a process attributed, at 
least in part, to MDVs. This mitochondrial transfer ini-
tiates a metabolic reprogramming in MSCs, augmenting 
TCA activity and de novo synthesis of fatty acids. Con-
sequently, this enhancement contributes to an elevated 
capacity to promote angiogenesis within MSCs [171]. 
This explains why platelet rich plasma (PRP) can allevi-
ate chronic inflammation in skeletal muscles and provide 
therapeutic benefits.

In laboratory conditions, stressed chondrocytes were 
observed to take up these MDVs and integrate them 
into their mitochondrial networks. This same phenom-
enon has been observed in skeletal muscle cells. This 
discovery strongly substantiates the notion that skeletal 
muscle cells possess the capability to encapsulate fully 
functional mitochondria within EVs. Consequently, these 
mitochondria-laden EVs can be transferred to neighbor-
ing cells without necessitating direct cell-to-cell contact 
[172]. This process is reversed in cases of chronic skeletal 
muscle inflammation. In such cases, recipient cells can 
take up EVs harboring oxidized or impaired mitochon-
drial components, thereby exerting a profound influence 
on the mitochondrial bioenergetics and functionality 
within these recipient cells. Tissues undergoing damage 
due to stress emit EVs enriched with compromised mito-
chondria, ATP, and mtDNA. Upon uptake of these EVs 
by neighboring cells, a cascade of events ensues, marked 
by the activation of the γ receptor, heightened produc-
tion of mitochondrial proteins, compromised mitochon-
drial functionality, and the induction of adipogenesis in 
the recipient cells [173].

The production and content of MDVs within cells have 
been observed to change in pathological conditions, indi-
cating their potential as biomarkers or targets for treat-
ment in various diseases. Conversely, MDVs originating 
from healthy cells exhibit the remarkable ability to con-
vey fully functional mitochondrial segments to specific 
target cells, thus facilitating the restoration of mito-
chondrial synthesis and energy metabolism [174]. These 
encouraging discoveries propose that the conveyance of 

mitochondrial components via EVs holds considerable 
promise for advancements in disease diagnosis and treat-
ment [175].

Collectively, EVs emerge as pivotal mediators in 
orchestrating diverse facets of skeletal muscle adaptation 
and remodeling. Notably, MDVs assume a forefront role 
in MQC by facilitating the degradation of compromised 
organelle proteins. Beyond their involvement in the 
maintenance of mitochondrial integrity, MDVs actively 
contribute to skeletal muscle’s inflammatory processes 
and regenerative mechanisms. Their cargo, compris-
ing mtDNA fragments and other essential components, 
enables MDVs to potentially elicit immune responses, 
thereby recruiting inflammatory cells and mediators cru-
cial for damaged, aged, and regenerating skeletal muscle 
(Fig.  5b). In addition, the authors posit that function-
ing as circulating factors, MDVs might instigate the dif-
ferentiation of satellite cells in skeletal muscle through 
the activation of well-established myogenic factors like 
MyoD and Myf5 [176], exemplifying their multifaceted 
role in modulating skeletal muscle dynamics [177].

Mitochondria‑associated membrane
Mitochondria, encapsulated by a dual membrane com-
prising the IMM and OMM, undergo a crucial process 
termed membrane permeabilization, signifying the 
release of mitochondrial contents into the cytosol [178]. 
This intricate phenomenon orchestrates a spectrum of 
functions, including the transport of  Ca2+ from the ER 
to mitochondria, the meticulous regulation of mitochon-
drial dynamics, the promotion of autophagy, the facilita-
tion of apoptosis signaling, responsive reactions to ER 
stress, active participation in redox reactions, and the 
meticulous maintenance of membrane structure.

In skeletal muscle cells, SR stands out as a specialized 
manifestation of the ER within skeletal muscle, exerting 
a vital function in an array of cellular processes. These 
encompass protein biosynthesis, modification, secre-
tion, synthesis of lipids and steroids, and the regulation 
of  Ca2+ signaling [179]. Within oxidative muscle fib-
ers, the IFM adopt an intricately organized configura-
tion, forming tightly ordered, elongated structures that 
establish connections with the SR, extensively branch-
ing across the A-band of the sarcomere [180] (Fig.  4a). 
In both structure and function, these two organelles 
are intricately linked through the MAM, serving as a 
dynamic communication platform between them. The 
MAM actively participates in diverse cellular processes 
[181], including the conveyance of  Ca2+ from the SR to 
the mitochondria, commonly known as SR-mitochon-
dria  Ca2+ transport. This transport mechanism is facili-
tated by a molecular complex comprising the inositol 
1,4,5-trisphosphate receptor (IP3R), glucose-regulated 
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protein 75 (Grp75), and voltage-dependent anion chan-
nel 1 (VDAC1). Remarkably, the intricate network of this 
complex assumes a critical function in orchestrating the 
regulation of mitochondrial physiology and maintain-
ing cellular  Ca2+ homeostasis. Consequently, it emerges 
as a crucial determinant influencing cellular survival and 
the delicate balance between life and death [182]. Recent 
discoveries indicate that the conveyance of  Ca2+ from the 
SR to the mitochondria, orchestrated by the macromo-
lecular complex comprising IP3R, Grp75, and VDAC1, 
may embody a mechanism with universal implications.

According to studies investigating the transport of 
MAM and SR-mitochondria  Ca2+ in response to SR 
stress [183], as well as mitochondrial dynamics [184], 
speculation abounds regarding the indispensable role of 
this transport system in facilitating mitochondrial  Ca2+ 
overload during intense exercise. Normally, the mito-
chondrial membrane exhibits direct physical connections 
to distinct regions of the SR. The transport of  Ca2+ from 
the SR to mitochondria is facilitated by the macromo-
lecular complex IP3 R-Grp75-VDAC1, which supplies 
 Ca2+ for ATP production. An imbalance in this transport 
mediated by IP3R-Grp75-VDAC1 can cause diseases and 
skeletal muscle dysfunction, ultimately contributing to a 
reduction in muscle performance.

Reportedly, VDAC1 harbors the sites that exhibit 
an affinity for  Ca2+, and its closure permits the influx 
of  Ca2+ into the mitochondria, ultimately triggering 
the opening of the mitochondrial permeability transi-
tion pore—a critical event associated with programmed 
cell death. This closure of VDAC1 serves as a signaling 
mechanism for the initiation of cellular demise. Simulta-
neously, the mitochondrial  Ca2+ uptake is influenced by 
the electrochemical potential difference across the IMM 
[185]. Notably, two pivotal types of  Ca2+ release channels 
reside in the membrane of SR: the ryanodine receptor 
(RyR) and IP3R, as depicted in Fig. 4b. Upon  Ca2+ release 
from the SR, the localized  Ca2+ concentration in close 
proximity to the mitochondrial membrane surpasses that 
in the adjacent cytoplasmic milieu by 5–10 times [186]. 
During IP3R activation, the concentration of  Ca2+ at the 
interface between the SR and mitochondria can further 
elevate to several tens of micromolar.

Recent research has overturned the aforementioned 
evidence. The findings of this study suggest that the effec-
tiveness of mitochondrial  Ca2+ uptake actually relies 
on the close proximity of mitochondria to  Ca2+ release 
channels at the SR membrane. This proximity is crucial 
for SR-mitochondria  Ca2+ transport [187]. This discov-
ery implies the direct transportation of  Ca2+ from the SR 
to mitochondria, independent of any elevation in cyto-
solic  Ca2+ concentration [188]. Regardless of the truth, 
this mode of  Ca2+ transport is far more complex than 

we previously imagined. Functionally speaking, mito-
chondria function akin to a “Berlin Wall,” acting as a bar-
rier to impede the propagation of cytosolic  Ca2+ waves 
originating in the apical area of the cell. On account of 
this, the cell is compartmentalized into two distinct 
functional regions marked by discernible cytosolic  Ca2+ 
signals [189]. In pathological conditions, a decrease in 
mitochondrial  Ca2+ uniporter (MCU) leads to reduced 
 Ca2+ accumulation in skeletal muscle mitochondria 
under-stimulated and resting conditions. Ultimately, this 
leads to a reduction in muscle fiber size and the onset of 
muscle atrophy [190]. Examination of the silenced MCU 
gene highlights a decrease in the respiration rates at both 
basal and maximal cellular levels, leading to alterations in 
metabolic processes accompanied by an elevation in the 
activity of fatty acid pathways [191].

Upon the permeabilization of the OMM by BAX/BAK-
associated pores, a cascade of events ensues, culminat-
ing in the liberation of critical apoptotic factors such as 
cytochrome C, apoptotic peptidase-activating factor 1 
(APAF1), and somatic (CYTC) from the intramembrane 
space. This release orchestrates a sequence that ulti-
mately triggers cell apoptosis. Expanding upon this, the 
permeabilization of the inner mitochondrial membrane 
(IMM) and the dilation of BAX/BAK pores contribute 
to the liberation of mtDNA. Therefore, inducing the per-
meabilization of the OMM can have both a pro-inflam-
matory effect and activate caspases. The latter process 
involves the cleavage of pro-IL-1β and pro-IL-18, as well 
as gasdermin family proteins, ultimately leading to cellu-
lar apoptosis [178]. Under physiological circumstances, 
anti-apoptotic members of the BCL-2 protein family, 
notably BCL-2 itself and BCL-2-like protein 1 (BCL-
2L1), diligently thwart the permeabilization of the OMM. 
Yet, when confronted with a trigger for apoptosis, either 
through transcriptional or post-translational mecha-
nisms, BH3-only proteins like BCL-2-binding compo-
nent 3 (BBC3) and BH3-interacting domain death agonist 
(BiD) undergo activation. This activation, in turn, leads to 
the initiation of proapoptotic members within the BCL-2 
family, underscoring the dynamic interplay that governs 
cellular fate in response to apoptotic cues. These proa-
poptotic proteins oligomerize on the OMM and initiate 
the permeabilization of the OMM, ultimately causing 
the release of mtDNA. Whether the released mtDNA is 
extruded selectively or enters vesicles for further process-
ing remains uncertain.

Subsequent to the release of mtDNA-spillage, the 
release of factors that induce apoptosis in response to 
the space between mitochondrial membranes result-
ing in the activation of an enzyme associated with DNA 
damage-induced polymerization, specifically poly (ADP-
ribose) polymerase (PARP), through a sequence of events 
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mediated by apoptosomes [192]. Abnormal levels of 
ROS/reactive nitrogen species (RNS), activation of death 
receptors by their ligands, DNA damage, dysregulation 
of  Ca2+, such as cytosolic  Ca2+ overload, stress in the SR, 
and alters in the protein production within the BCL-2 
family [193].

Mitochondrial nanotunnels
Inter-mitochondrial junctions (IMJs) are proximal con-
tact sites between OMMs, sharing structural similari-
ties with cell–cell gap junctions. Initially identified in 
cardiomyocytes connecting electrically coupled mito-
chondria, these junctions are characterized by highly 
electron-dense mitochondrial membranes [194]. The fre-
quency of IMJs escalates in tandem with cellular energy 
demands and mitochondrial volume density [40]. Mito-
chondrial nanotunnels, thin double-membrane protru-
sions approximately 100 nm in width, extend from donor 
mitochondria across distances of several microns. These 
nanotunnels demonstrate the capacity to interact and 
fuse with recipient mitochondria [195].

While in the majority of cellular microenvironments, 
mitochondrial dynamics are well-suited for routine met-
abolic activities. In differentiated cells with a dense cel-
lular structure environment, like skeletal muscle cells, 
the movement of mitochondria is considerably restricted. 
This acts as a robust hindrance, akin to a ship anchor, 
limiting the trajectory of mitochondrial activity and con-
sequently reducing the frequency of potential mitochon-
drial fusion events [196, 197]. At this point, the role of 
mitochondrial nanochannels becomes particularly evi-
dent. Strikingly, these dysfunctional mitochondria were 
observed to possess six times more nanotunnels com-
pared to their counterparts in healthy controls [197]. 
Intriguingly, mitochondrial nanotunnels may arise or sta-
bilize in a functionally complementing manner, particu-
larly between mitochondria harboring impaired OxPhos 
capacity [195]. The author posits that mitochondrial nan-
ochannels represent communication structures gener-
ated by stationary mitochondria “seeking assistance.” This 
interpretation draws parallels with bacterial “quorum 
sensing” behavior [198]. Considering the bacterial origins 
of mitochondria and their retention of specific functions 
and structural traits inherited from their prokaryotic 
ancestors, the existence of tubular protrusions in mito-
chondrial membranes facilitating molecular exchange 
does not appear entirely unexpected.

Relevant studies indicate that prolonged disruptions 
in  Ca2+ homeostasis can lead to mitochondrial stress, 
potentially serving as a crucial triggering factor for the 
formation of nanotunnels [199]. This can be ascribed to 
the disturbance in  Ca2+ dynamics, hindering the process 
of mitochondrial fusion, as  Ca2+ peaks are essential for 

maintaining normal fusion events. Such disturbances 
significantly impact the complementary functions and 
molecular interactions between mitochondria. 3D recon-
struction of the mitochondrial network in human skel-
etal muscle reveals that both failed fission and re-fusion 
events give rise to new nanochannels [197, 200]. Further 
research is needed to confirm whether mitochondrial 
nanotunnels have an impact on chronic inflammatory 
musculoskeletal disorders.

Relationship between migrasome, mitochondria, 
and chronic inflammatory musculoskeletal 
disorders
The migrasome is a recently identified organelle that is 
formed by moving cells. In the course of cell migration, 
retraction fibers are drawn from the posterior of the cells, 
leading to the formation of migrasomes—substantial 
vesicular structures—on these retraction fibers. Simi-
lar observations have been made with other organelles 
within the cell [201–204]. Migrasomes aid in the removal 
of damaged mitochondria in migrating cells, which helps 
to preserve MQC [203]. This process is known as mito-
cytosis [205]. The Drp1 assumes a pivotal role in mitocy-
tosis. Drp1 likely facilitates mitocytosis by promoting the 
fission of damaged mitochondria from the mitochondrial 
network—an essential process in preserving the potential 
across the mitochondrial membrane under conditions of 
mild mitochondrial stress. This discovery opens up new 
avenues for further exploration of mitochondria.

Presently, migrasomes exhibit a triad of functions: the 
release of signaling molecules through rupture or leak-
age, acting as carriers for damaged mitochondria, and 
enabling the lateral transfer of mRNA and proteins [206]. 
This versatility is exemplified in experiments with hetero-
plasmic cells housing both normal and mutant mtDNA-
containing mitochondria. The mutant mtDNA, marked 
by a significant deletion of genes encoding electron trans-
fer chain proteins, predominates within migrasomes 
derived from these cells. This observation indicates a 
preferential transport of functionally impaired mitochon-
dria into migrasomes. The selectivity in this process is 
attributed to the distinct binding tendencies of damaged 
mitochondria to motor proteins. Damaged mitochondria 
exhibit avoidance in binding to the inward motor pro-
tein Dynein, while exposure to mitochondrial stressors 
enhances their affinity for the outward motor Kinesin 1. 
Consequently, damaged mitochondria are transported to 
the cell periphery, where they are sequestered into migra-
somes and eventually eliminated. At the cell periphery, 
mitochondria tether to the plasma membrane through 
the action of Myosin19, an actin-based motor protein 
renowned for its binding to cortical actin and mitochon-
dria [205].
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Mitocytosis is particularly involved in address-
ing instances of mild mitochondrial damage, typically 
encountered within the realm of normal physiological 
conditions [205]. By using in vivo imaging, observations 
by researchers indicate that neutrophils produce substan-
tial quantities of migrasomes in the circulatory system 
[205, 206]. These migrasomes often contain mitochon-
dria with abnormal morphology. To further investigate 
this phenomenon, the researchers conducted a study 
using Tspan9 knockout mice, which have reduced migra-
some formation [207]. It was found that the circulating 
neutrophils in these mice had significantly decreased 
mitochondrial membrane potential and viability. These 
findings imply that the elimination of impaired mito-
chondria is crucial for maintaining the survival of cir-
culating neutrophils. When cells initiate migration, 
migrasomes are formed to facilitate mitocytosis, which 
helps balance out the increased mitochondrial stress 
caused by the higher energy demand [208]. In this way, 
mitocytosis integrates MQC with cellular migration. 
It is crucial to emphasize that even the aggregation of a 
limited quantity of impaired mitochondria can exert a 
significant long-term impact [209]. The continuous elimi-
nation of impaired mitochondria through mitocytosis 
empowers cells to evade the adverse consequences linked 
to the accumulation of dysfunctional mitochondria. Cur-
rently, the exploration of migrasomes’ role in disease is 
at its nascent stage. In order to manage mitochondrial 
stress, mitocytosis and mitophagy might be employed as 
a two-step system. Mitocytosis handles mild mitochon-
drial stress in such a system, while mitophagy handles 
severe mitochondrial damage. Further investigation is 
needed to understand how this process operates in the 
context of chronic inflammation. It is undeniable that 
there is a significant presence of damaged and mutated 
mitochondria in chronic inflammation [210], which may 
be attributed to the activity of migrasomes.

Relationship between virus, mitochondria, 
and chronic inflammatory musculoskeletal 
disorders
Many viral diseases disrupt the functioning of mito-
chondria [211]. For example, the Epstein–Barr virus 
(EBV) impacts mitochondrial fission [212], while the 
pseudorabies virus (PRV) and herpes simplex virus type 
1 (HSV-1) alter the balance of  Ca2+ [213]. In addition, 
several viruses, such as the Hepatitis B virus and influ-
enza viruses, endorse and produce proteins that promote 
programmed cell death [214]. Muscle biopsies are infre-
quently conducted in suspected instances of virus-related 
myositis, leading to limited data on the underlying 
pathophysiological mechanisms behind acute or chronic 
musculoskeletal symptoms during viral infections [215]. 

Musculoskeletal symptoms or myopathies, occurring 
not only in the acute phase of viral infections but also 
in postinfectious syndromes (PIS), are notably linked to 
overlapping syndromes like chronic fatigue syndromes 
(CFS), wherein viral infections are believed to contribute 
to the development of the condition [216, 217].

Following the emergence of unidentified pneumonia 
cases in Wuhan hospitals, China, in late 2019, and the 
subsequent categorization by the World Health Organi-
zation (WHO) as severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), the ailment quickly spread 
globally and became a pandemic within a short span of 
3  months. Numerous reports have documented muscu-
lar symptoms during the post-acute phase of COVID-
19 [218]. In accordance with an extensive longitudinal 
cohort study, 52% of individuals surveyed 6 months post-
infection reported the presence of muscle fatigue and 
weakness, and this percentage remained at 20% even 
after 1  year of infection. Women were found to have a 
higher prevalence of these symptoms compared to men 
[219]. The study found that 3% of individuals experienced 
myalgia after 6  months, which increased to 4% after 
12 months.

Since the start of the pandemic, we have been studying 
the potential immunological mechanisms involved in the 
development of autoimmune diseases after SARS-CoV-2 
infection. Eventually, our focus shifted to the mitochon-
dria. SARS-CoV-2 infection causes stress and damage 
to the mitochondria. Several studies suggest that the 
spike protein can harm the mitochondria of human cells. 
SARS-CoV-2 can directly infect skeletal muscle cells 
through angiotensin-converting enzyme 2 (ACE2) and 
activate resident immune cells, resulting in both direct 
viral damage and indirect immune-mediated damage 
[220]. The virus attacks the mitochondria, particularly 
the OxPhos pathway, such as Complex-I [221], which 
leads to abnormal production of ROS. The heightened 
generation of ROS and the subsequent release of oxidized 
mtDNA into the cytoplasm further exacerbate inflamma-
tion by activating the NLRP3 inflammasome, initiating 
the inflammation cascade [222, 223]. Activation of the 
inflammasome leads to the synthesis of pro-inflamma-
tory cytokines, like IL-1β and IL-12, thereby augmenting 
susceptibility to chronic inflammation [224] (Fig. 6).

In addition, investigations into metabolism propose 
that SARS-CoV-2 hinders mitophagy [225], causing the 
buildup of malfunctioning and compromised mitochon-
dria. This not only impairs the response of the mitochon-
drial antiviral signaling protein (MAVS), but also worsens 
inflammation and cell death [226–228]. Nonetheless, the 
precise molecular mechanisms underlying this process 
warrant further critical evaluation. The hijacking of mito-
chondria by SARS-CoV-2 may additionally jeopardize 
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their integrity, impede their functionality, and elevate 
oxidative stress. SARS-CoV-2 alters the dynamics of 
mitochondria by affecting processes/functions such as 
autophagy [229], UPR stress [230], mitophagy [231], and 
enzymes involved in these processes [232] (Fig. 6). Hence, 
SARS-CoV-2 has a significant impact on mitochondrial 
physiology [233, 234]. Based on the aforementioned 
research, it is conceivable that exogenous supplementa-
tion of healthy mitochondria or extracellular vesicles 
secreted by mitochondria could be utilized for treating 
chronic musculoskeletal inflammation induced by patho-
genic agents such as SARS-CoV-2 and similar pathogens. 
This may offer novel insights and directions for future 

research endeavors. It has been suggested that COVID-
19 may trigger or worsen idiopathic inflammatory myo-
pathies (IIMs), which are chronic autoimmune-mediated 
muscle injuries. The discussion of these autoimmune 
conditions is beyond the scope of this review.

Future directions
Exploring the intricate mitochondrial mechanisms 
underlying the pathogenesis of chronic inflamma-
tory musculoskeletal disorders reveals their pivotal 
role as regulators of regulated cell death (RCD) [235]. 
The evolving evidence establishes a close association 
between disruptions in mitochondrial functions and 

Fig. 6 Schematic representation of how COVID‑19 causes damage to mitochondria and leads to chronic skeletal muscle disease. SARS‑CoV‑2 
infects skeletal muscle cells directly through the ACE2 receptor. The viral RNA is recognized by the PRR in the cytoplasm, activating the MAVS 
and type I/III response. SARS‑CoV‑2 has developed mechanisms to evade the innate immune response, such as inhibiting MAVS through impaired 
mitotic function. Impaired mitophagy results in mitochondrial dysfunction. SARS‑CoV‑2 exploits the mitochondrial machinery for its own 
replication, further contributing to mitochondrial dysfunction. Mitochondrial damage, the release of free mtDNA, and uncontrolled viral replication 
all enhance inflammasome activation and cytokine storms, ultimately causing mitochondrial death. ACE2 angiotensin‑converting enzyme 2, MAVS 
mitochondrial antiviral signaling, TLR toll‑like receptors, mtDNA mitochondrial DNA, ROS reactive oxygen species, PRRs pattern recognition receptors, 
NF-κB nuclear factor kappa‑light‑chain‑enhancer of activated B, IRFs interferon regulatory factors, IL interleukin, SARS-CoV-2 severe acute respiratory 
syndrome coronavirus 2. Created with BioRender.com



Page 22 of 29Wu et al. Cell & Bioscience           (2024) 14:76 

structure during RCD, triggering an inflammatory 
response essential for maintaining organismal balance 
[236]. This dysregulation of inflammatory responses, 
attributed to mitochondrial components, contributes 
to various human disorders, spanning conditions char-
acterized by excessive inflammation to those arising 
from inefficient inflammatory reactions [237].

Current clinical interventions predominantly target 
the effector phase of inflammation, employing thera-
pies like cytokine-neutralizing agents and addressing 
pattern recognition receptors (PRRs) such as interferon 
response cGAMP interactor 1 (STING1) agonists [238]. 
Despite the focus on these strategies, the modulation 
of inflammation through targeted mitochondrial inter-
ventions remains an underexplored avenue. This may 
stem from the nascent state of research in this domain 
and the limited pharmacological interventions available 
for mitigating mitochondrial dysfunction in patients. 
Currently, the exploration extends to mitochondrial 
transplantation as a potential therapeutic approach for 
chronic injury [239, 240]. Studies suggest that MSCs 
facilitate mitochondrial exchange with damaged cells, 
offering a potential avenue for tissue recovery [241]. 
Despite encouraging in  vitro evidence, further in  vivo 
experimental research is imperative to validate the effi-
cacy of stem cell-derived mitochondrial transplantation 
for treating chronic inflammatory injury [242].

Navigating the critical challenge of mitochondrial 
transfer, compatibility with nuclear DNA (nDNA) 
emerges as a pivotal factor. Enhanced mtDNA–nDNA 
pairing and improved mtDNA–nDNA metabolic pro-
file pairing demonstrate favorable effects on cell pro-
liferation [243, 244]. The “Mitopunch” tool expands 
genomic combinations, addressing the complexities 
of mtDNA–nDNA compatibility [244]. Beyond nDNA 
interactions, establishing robust functional connec-
tions between exogenous mitochondria and other cel-
lular organelles is crucial for cellular homeostasis and 
preventing disease [245]. Yet, the intricacies of mito-
chondrial fusion with endogenous counterparts, altera-
tions in recipient cell or mitochondrial autophagy, and 
selective autophagy of exogenous mitochondria pose 
important research directions for further investigation. 
The ultimate objective is to develop strategies targeting 
mitochondrial functions to finely control inflammatory 
reactions in patients.
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