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Abstract 

Background The adult intestinal epithelium is a complex, self‑renewing tissue composed of specialized cell types 
with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self‑
renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they 
move along the crypt‑villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant 
hormone‑producing cells in mammals and involved in the control of energy homeostasis. However, regulation 
of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine 
methyltransferase (PRMT) 1, a histone methyltransferase and transcription co‑activator, is important for adult intestinal 
epithelial homeostasis.

Results To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA‑Seq on small 
intestinal crypts of tamoxifen‑induced intestinal epithelium‑specific PRMT1 knockout and  PRMT1fl/fl adult mice. 
We found that  PRMT1fl/fl and PRMT1‑deficient small intestinal crypts exhibited markedly different mRNA profiles. 
Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways 
among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding 
enteroendocrine‑specific hormones and transcription factors were upregulated in PRMT1‑deficient small intestine. 
Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, 
Neurogenin 3‑positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knock‑
out mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, includ‑
ing Neuod1, Pax4, Insm1, in PRMT1‑deficient crypts.

Conclusions Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendo‑
crine cell development, most likely via inhibition of Neurogenin 3‑mediated commitment to EEC lineage. It further 
suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect 
metabolism and metabolic diseases.
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Background
The adult intestinal epithelium is a complex, self-renew-
ing tissue composed of specialized cell types with diverse 
functions. Intestinal stem cells (ISCs) located at the bot-
tom of crypts, divide to either self-renew, or move to 
the transit amplifying zone to divide and differentiate 
into absorptive and secretory cells [1–5]. Enteroendo-
crine cells (EECs), one type of secretory cells, are the 
most abundant hormone-producing cells in mammals 
and constitute the largest endocrine system in the body. 
EECs secrete various hormones including glucagon-like 
peptides1 and 2 (GLP-1, GLP-2), peptide YY (PYY), chol-
ecystokinin (CCK), gastric inhibitory polypeptide (GIP), 
secretin (SCT), Ghrelin (GHRL), neurotensin (NTS) and 
neurotransmitter serotonin (5-HT). These EEC-derived 
gut hormones and peptides play crucial roles in regulat-
ing physiological functions such as nutrient intake, lipid 
adsorption, glucose homeostasis, and gut motility [6–10]. 
EECs are often dysregulated in obesity and type 2 diabe-
tes patients [11, 12]. Importantly, GLP-1 receptor ago-
nists are already widely used to treat diabetes and obesity, 
and emerging gut hormone-based combination therapies 
provide a new option for metabolic diseases [13–15]. As 
more therapeutics are being designed to target EEC hor-
mones, a comprehensive understanding of the differenti-
ation and function of the EEC system becomes essential.

Like all mature intestinal epithelial cells, mouse EECs 
are actively renewed every 3–5 days throughout adult life. 
They originate from ISCs and transit-amplifying cells, the 
highly proliferative progenitor cells derived from ISCs 
[1–3], and commit into secretory cell lineage under the 
control of the transcription factor mouth atonal homolog 
1 (Atoh1) [16]. Subsequently, transcription factor Neu-
rogenin 3 (Neurog3) promotes enteroendocrine lineage 
differentiation. Neurog3 is transiently expressed in early 
secretory progenitors, and its expression is turned off as 
the cells become post-mitotic and differentiate into EECs 
[17–19]. Neurog3 initiates the differentiation of sub-
populations of epithelial cells by activating a cascade of 
downstream target genes including Neurod1 [20], Pax4/6 
[21, 22], Arx [21], and Insm1 [23]. Mice lacking Neurog3 
in the intestinal epithelium do not have any EECs and 
gut hormones, with growth retardation and increased 
lethality [24]. Similarly, humans with mutations in Neu-
rog3 have impaired EEC development after birth and 
have severe malabsorptive diarrhea [25]. Neurog3 dosage 
regulates the allocation of intestinal cell fate toward EEC 
vs goblet cells, the mucus-producing secretory cells [26], 
indicating a reciprocal interaction in the determination 
of secretory cell fate. Recently, novel transcriptional regu-
lators of enteroendocrine differentiation have been iden-
tified by single-cell RNA and/or ATAC seq in both mouse 
[27, 28] and human [29, 30]. However, the upstream 

regulators of Neurog3 and how those downstream tran-
scription factors coordinately interact with each other to 
generate mature EEC types remain unknown.

Protein arginine methyltransferase 1 (PRMT1) is the 
predominant arginine methyltransferase in mammalian 
cells and responsible for over 85% of arginine methyla-
tion activity [31]. Substrates of PRMT1 include histones 
H3 and H4, transcription factors, and other cellular sign-
aling proteins [32–34]. PRMT1 has been reported to play 
critical roles in various physiological processes as a result 
of its diverse substrates [35]. For example, it has been 
demonstrated that PRMT1 is involved in regulating nor-
mal development of lymphocytes (B cells) [36] and iden-
tity of mature β-cell [37]. We have previously found that 
intestinal epithelium-specific PRMT1 knockout leads to 
mouse intestinal defects in the adult due to dysregulation 
of intestinal homeostasis [38, 39]. In addition, PRMT1 is 
highly expressed in mouse crypt epithelium, where pro-
liferating cells and ISCs are located [38–40].

Here, we attempted to investigate the potential molec-
ular mechanism underlying PRMT1 function in adult 
intestine by using tamoxifen-inducible intestinal epi-
thelium-specific PRMT1 knockout mice for RNA-Seq 
analysis. Our results showed  PRMT1fl/fl and PRMT1-
knockout small intestinal crypts exhibited markedly dif-
ferent mRNA expression profiles. Surprisingly, GO and 
KEGG pathway analyses of the differentially expressed 
genes (DEGs) between  PRMT1fl/fl and knockout crypts 
showed that the topmost significantly enriched GO terms 
and biological pathways among the upregulated genes 
in PRMT1 knockout crypts were associated with EECs. 
Consistently, there was a marked increase in the num-
ber of EECs in PRMT1 knockout small intestine. We also 
observed that Neurog3-positive enteroendocrine pro-
genitor cells increased in the small intestinal crypts of the 
knockout mice, accompanied by increased expression of 
downstream target genes of Neurog3. Our findings thus 
uncover a previously unknown role of the epigenetic 
enzyme PRMT1 in controlling mouse EEC development 
and homeostasis.

Results
Transcriptomic changes due to inducible knockout 
of PRMT1 in adult intestinal epithelium.
We previously generated a tamoxifen-induced intesti-
nal epithelium-specific PRMT1 knockout mouse model 
 (PRMT1fl/fl;Vil-CreERT2; henceforth referred to as 
 PRMT1indΔIEC) and observed that induced PRMT1 dele-
tion in mice of 8–12 weeks old led to abnormal intestine, 
including increased cell proliferation and longer crypts 
in the small intestine compared to  PRMT1fl/fl mice [38]. 
To provide insight into the mechanisms underlying the 
changes resulted from PRMT1 knockout, we performed 
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RNA-Seq on small intestinal crypts from  PRMT1indΔIEC 
(KO) and  PRMT1fl/fl mice at different time points after 
the first tamoxifen injection (Fig. 1A). The RNA-Seq data 
from individual samples were assessed by principal com-
ponent analysis (PCA). We observed a distinct separation 
of tamoxifen-treated day 7 and 14 KO samples from the 
rest of the samples, including day 2 KO samples, along 
PC1 axis on the PCA map (Fig.  1B). This suggests that 
2  days tamoxifen-treated  PRMT1indΔIEC and  PRMT1fl/

fl small intestinal crypts had similar transcriptome pro-
files and that different lengths of tamoxifen treatment 
did not affect the transcriptome profiles of  PRMT1fl/fl 
small intestinal crypts significantly. Consistently, there 
were few differentially expressed genes (DEGs) between 
2  days tamoxifen-treated  PRMT1indΔIEC and  PRMT1fl/fl 
small intestinal crypts (Fig. S1A, Table S1). Interestingly, 
on the PCA map, we also observed a spatial separation 
between male (top) and female (bottom) samples among 
all 18 samples along PC2 axis (Fig. 1B). Consistently, we 
found a number of gender-specific DEGs (Table S2) and 
also observed that female and male samples had nearly 
identical transcriptome profiles except these gender-
specific genes, as visualized by MA plot (Fig. S1B). This 
indicates there was no gender effect of PRMT1 knockout. 
Thus, we removed these gender-specific genes in the rest 
of the analyses.

Next, we focused on day 7 and day14 samples as they 
exhibited distinct transcriptome profiles (Fig.  1B). We 
used DESeq2 for pairwise analyses to obtain DEGs 
between  PRMT1indΔIEC and  PRMT1fl/fl mice at day 7 or 
day 14 of tamoxifen treatment (Tables S3, S4). We iden-
tified 1733 up-regulated and 2282 down-regulated DEGs 
(p-adjusted < 0.05) at day 7 (Fig. 2A) and these numbers 
decreased to 943 up-regulated DEGs and 1171 down-
regulated DEGs, respectively, at day 14 (Fig.  2B). This 
reduction suggests that some of transcriptome changes 
after tamoxifen treatment might be transient. To further 
explore this, we performed Venn diagram analyses on up-
regulated (Fig. 2C) and down-regulated DEGs (Fig. 2D). 
We observed that the majority of the up-regulated 
(67.4%) or down-regulated (83.8%) DEGs on day 14 were 

also found on day 7, whereas most of the up- and down-
regulated DEGs were exclusively on day 7 (Fig.  2C, D), 
suggesting that their regulation was transient. Interest-
ingly, we noticed that stem cell markers such as lgr5 and 
olfm4 were among the transiently downregulated DEGs 
(Table S3). This observation might be related to the tran-
sient toxicity of tamoxifen to stems cells in the gastroin-
testinal tracts as reported before [41].

PRMT1 deletion in adult intestinal epithelium affects 
pathways involved in enteroendocrine cells (EECs)
To reveal the effects of PRMT1 knockout and avoid 
potential transient effects on transcriptome induced 
by tamoxifen toxicity, we carried out pathway enrich-
ment analyses by focusing on the up-regulated DEGs 
(p-adjusted < 0.05) on day 14 and obtained many GO 
terms and KEGG pathways enriched among the DEGs 
(Table  S5–8). Surprisingly, the top enriched GO terms 
for biological function were associated with hormone 
secretion and regulation, glucose homeostasis and endo-
crine system development (Fig. 3A). In addition, the top 
enriched molecular  function GO terms were primarily 
linked to ion channel activity, vesicle-mediated trans-
porters activity, and hormone activity and metabolism 
(Fig.  3B). Finally, the top enriched cellular components 
GO terms were associated with vesicle membrane, secre-
tory granule activity, and neuron projections (Fig. 3C). All 
these most significantly enriched GO terms are related to 
known properties and functions of the hormone-produc-
ing enteroendocrine cell (EEC), including synthesis, mat-
uration, transport, storage, and secretion of hormones 
[7–10, 26]. Indeed, these pathways enriched among DEGs 
upregulated in PRMT1-deficient crypts coincide with 
pathways affected by Neurog3, a regulator for EEC devel-
opment [26]. Similarly, KEGG pathway analysis showed 
that these up-regulated DEGs were enriched in neuro-
active ligand-receptor interaction, insulin secretion, and 
fat digestion and absorption (Fig.  3D), again consistent 
with increased EEC function. Of note, the pathway for 
cytochrome P450, which has been shown to protect mice 
against HFD-induced obesity [42], was also significantly 

Fig. 1 Induced deletion of PRMT1 from adult intestinal epithelium leads to robust transcriptomic changes. A Schematic diagram for inducible 
PRMT1 deletion in adult intestinal epithelium with tamoxifen treatment and time points at which RNA‑Seq was performed. The  PRMT1fl/fl 
and  PRMT1indΔIEC mice were injected with 2 mg tamoxifen for 5 consecutive days (day 0–4). The intestine was collected at day 2 before the next 
tamoxifen injection, day 7 or day 14 as indicated. Small intestinal crypts were purified and used for RNA‑Seq. Age‑ and gender‑ matched  PRMT1fl/

fl littermates were used as control at each time point. n = 3 per group. B Significant changes in the transcriptome occurs at days 7 and 14 
after initiating inducible PRMT1 knockout. Principal component analysis (PCA) of the RNA‑Seq data from individual mice revealed that the 6 
 PRMT1indΔIEC samples for days 7 and 14 (KO: d7 or d14) had very distinct spatial locations, well‑separated from the rest of the samples along PC1 
axis. Note that all tamoxifen‑treated  PRMT1fl/fl (referred to as WT) and 2 day tamoxifen‑treated  PRMT1indΔIEC (KO: d2) samples (n = 12) clustered 
together along PC1 axis. Interestingly, male samples (top; n = 10) and female samples (bottom; n = 8) were separated from each other along PC2 axis 
but not PC1 axis, indicating that there are distinct male and female gene expression patterns but PRMT1 KO has no gender‑dependent effects

(See figure on next page.)
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enriched among the DEGs, suggesting a potential role of 
PRMT1 in lipid metabolism. Taken together, these analy-
ses unexpectedly revealed that PRMT1 deletion in adult 

intestinal epithelium affected pathways involved in EECs, 
suggesting PRMT1 may contribute to EEC development 
and function.

Fig. 1 (See legend on previous page.)
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Fig. 2 Differentially expressed genes (DEGs) after inducible PRMT1 KO in adult small intestinal crypts. A, B DEG analysis of the small intestinal 
crypts of adult  PRMT1fl/fl (WT) and  PRMT1indΔIEC (KO) mice at day 7 (A) and day 14 (B) after the initiation of tamoxifen treatment as in Fig. 1. MA 
plot visualizing the log2‑fold change (M values) differences according to log2‑mean expression levels (A values). Red and blue dots represent 
significantly (Adjusted p‑value < 0.05) up‑ and down‑regulated genes, respectively, in the KO compared to  PRMT1fl/fl intestine. Note that there were 
many more DEGs at day 7 compared to day 14, with 1733 up‑regulated and 2282 down‑regulated genes in at day 7 vs 943 up‑regulated and 1171 
down‑regulated genes at day 14. C, D Venn diagrams depicting overlaps between DEGs after 7 and 14 days of tamoxifen treatment for the up‑ (C) 
or down‑ (D) regulated DEGs, respectively. Note that most of the upregulated (C) or downregulated (D) DEGs at day 14 were similarly regulated 
on day 7. WT:  PRMT1fl/fl, KO:  PRMT1indΔIEC
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Fig. 3 KEGG pathway and GO analyses reveal that PRMT1 deletion affects most significantly enteroendocrine cells (EECs). A–C The top 25 GO 
terms for biological processes (A), molecular function (B), and cellular components (C) that were significantly enriched among the up‑regulated 
DEGs between  PRMT1indΔIEC (KO)_d14 and  PRMT1fl/fl (WT)_d14 intestinal crypts. All GO terms are involved in EECs. D The top 13 KEGG pathways 
significantly enriched among the up‑regulated DEGs between  PRMT1indΔIEC (KO)_d14 and  PRMT1fl/fl (WT)_d14 intestinal crypts. Arrows point 
to pathways related to regulation of lipid and glucose metabolism. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Horizontal axis: ratio of genes in a GO term or KEGG pathway to the totally number of up‑regulated DEGs. From bottom to top along the vertically 
axis: increased gene counts in a GO term or KEGG pathway (size of the dot). The color of the dots indicates p‑adj value for the enrichment
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The expression of enteroendocrine‑specific hormone 
and transcription factor genes is upregulated 
in  PRMT1indΔIEC small intestinal epithelium
To determine if EEC development and/or homeostasis 
is altered by PRMT1 deletion, we analyzed the expres-
sion levels of enteroendocrine markers. We found that 
indeed, the upregulated DEGs due to PRMT1 knock-
out included genes encoding intestinal peptide hor-
mones or related key enzymes including Pyy, Cck, Gip, 
Sct, substance P (Tachykinin, Precursor 1(Tac1), Glp-1 

precursor glucagon (Gcg) and tryptophan hydroxylase 1 
(Tph1), a rate-limiting enzyme in serotonin biosynthe-
sis, and granule components (Chga, Chgb) (Fig.  4A). In 
addition, the expression of transcription factors known 
to control EEC development and differentiation, includ-
ing Neurog3, Neurod1, Pax4/6, Insm1, Fev and Lmx1a 
[43], were also significantly upregulated in  PRMT1indΔIEC 
small intestinal crypts (Fig.  4A). Consistent with recent 
studies reporting the identification of novel transcription 
factors, including Rfx6, Hmgn3, and Glis3, involved in 

Fig. 4 The expression of enteroendocrine‑specific hormone and transcription factors are upregulated in  PRMT1indΔIEC small intestinal epithelium. A 
The expression of up‑regulated enteroendocrine markers (transcriptional factors, EEC‑specific hormones and granule components) were obtained 
from the RNA‑seq data and the fold change between  PRMT1indΔIEC (KO)_d14 and  PRMT1fl/fl (WT)_d14 small intestinal crypts were presented 
with P‑adj values in the table. B, C RT‑PCR validation of the expression of intestinal EEC hormone genes (B) and EEC transcription factors (C) 
in the small intestinal epithelial cells of  PRMT1indΔIEC and  PRMT1fl/fl mice at day 14 after the first tamoxifen injection. The values were presented 
as mean ± SEM with n = 5 mice per group. *p < 0.05, **p < 0.01, ***p < 0.001. GC, granule components
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EEC development [26, 44], we found that the expression 
of these three genes was upregulated in PRMT1 knock-
out crypts (Fig.  4A). To confirm the RNA-Seq findings, 
we analyzed the expression of several enteroendocrine 
markers and transcription factors independently by 
RT-qPCR. Consistently, the levels of the intestinal hor-
mone genes, including Tph1, Gip, GLP-1, Cck and Sct 
(Fig.  4B) and transcription factor including Neurog3, 
Neurod1 and Pax4 (Fig.  4C), were significantly elevated 
in the small intestinal epithelium of  PRMT1indΔIEC mice 
compared to those in littermate controls at day 14 after 
the first tamoxifen injection. Therefore, our results sug-
gest that PRMT1 controls transcriptional programs that 
repress the differentiation of enteroendocrine cells in the 
small intestine.

The Number of enteroendocrine cells (EECs) is increased 
in the PRMT1‑deficient adult small intestine
The transcriptome and RT-PCR analyses above revealed 
a novel and unexpected role of PRMT1 in EEC develop-
ment and/or function, further suggesting that the num-
ber of EECs might be affected by PRMT1 deletion. We 
analyzed EECs in small intestinal cross-sections by using 
immunofluorescent staining of chromogranin A (CHGA), 
an intestinal EEC marker. As shown in Fig.  5A, EECs 
were rare and primarily located in the villi in  PRMT1fl/

fl mice. A dramatical increase in the number of EECs 
was observed in the small intestine of  PRMT1indΔIEC 
mice on day14 after the initiation of tamoxifen treat-
ment, and the EECs were presented both in villi and 
crypts of  PRMT1indΔIEC small intestine (Fig. 5A). Quan-
titative analysis showed that the number of EECs in the 
small intestine of  PRMT1indΔIEC mice was about 2.5-fold 
of those in  PRMT1fl/fl mice (Fig. 5B). To further investi-
gate the effect of PRMT knockout on EECs in the small 
intestine, we detected serotonin-positive enterochromaf-
fin cells, the most abundant subtype of EECs, by using 
immunohistochemistry with an anti-serotonin antibody 
on small intestinal cross-sections (Fig. 5C). Consistently, 
the number of serotonin positive cells in the small intes-
tine of  PRMT1indΔIEC mice was about twofold of those in 
 PRMT1fl/fl mice (Fig. 5D).

To further investigate the role of PRMT1 on EECs, 
we crossed  PRMT1fl/fl mice with Vil-cre mice, which 
expresses Cre recombinase under the control of intes-
tinal epithelium specific villin promoter, to deleted 
PRMT1 in the intestinal epithelium during embryonic 
development and throughout adulthood  (PRMT1fl/

fl;Vil-Cre, henceforth referred to as  PRMT1ΔIEC) [38, 
39]. We found that the resulting adult  PRMT1ΔIEC had 
markedly increased CHGA+ cells in the small intestine 
compared to  PRMT1fl/fl mice (Fig. S2). We previously 
reported that intestinal epithelium-specific knockout 

of PRMT1 caused distinct, region-specific effects 
on the small intestine and colon: i.e., increasing and 
decreasing the goblet cell number in the small intesti-
nal and colonic crypts, respectively [38]. To investigate 
whether PRMT1 knockout also has a region-specific 
effect on EECs, we detected EECs with anti-CHGA 
antibody on colonic sections of  PRMT1indΔIEC and 
 PRMT1fl/fl mice on day14 after the initiation of tamox-
ifen treatment (Fig. S3A). Interestingly, the number of 
EECs of  PRMT1indΔIEC colon was comparable to that 
of  PRMT1fl/fl colon (Fig. S3B). Furthermore, CHGA 
mRNA level in colonic epithelium was similar between 
 PRMT1indΔIEC and  PRMT1fl/fl mice (Fig. S3C). In addi-
tion, we observed that tamoxifen-induced knockout 
PRMT1  (PRMT1indΔIEC) did not have any significant 
effect on the body weight of the animals compared to 
 PRMT1fl/fl mice during the treatment (data not shown). 
Thus, PRMT1 is critical for EEC homeostasis in the 
small intestine but not colon of adult mice, although its 
role, if any, in EECs development during embryogenesis 
remains to be determined.

PRMT1 likely regulates EEC number by affecting 
Neurogenin 3‑positive EEC progenitor cells
EECs are derived from neurogenin3 (Neurog3)-posi-
tive cells in the small intestine [18, 19, 24, 45]. Given 
the increased EECs, we observed, not surprisingly, that 
Neurog3 expression was also upregulated in the small 
intestinal epithelium of  PRMT1indΔIEC mice based on 
both RNA-seq and RT-qPCR analyses (Fig.  4A, C). In 
addition, the expression levels of several known down-
stream target genes of Neurog3, including Neurod1 
[20], Pax4/6 [21, 22] Insm1 [23], were also upregulated 
in the small intestinal epithelium of  PRMT1indΔIEC mice 
(Fig. 4A, C). Thus, PRMT1 knockout might have upreg-
ulated Neurog3, leading to increased Neurog3-posi-
tive progenitor cells. To test this, we carried out in  situ 
hybridization analysis of Neurog3 expression by using 
RNA scope [46] on small intestinal sections of mice at 
day 14 after initiating tamoxifen treatment. In  PRMT1fl/

fl mice, Neurog3 + cells were rare and expectedly located 
in the crypts of adult small intestine, where the transit-
amplifying (TA) proliferating cells located (Fig.  6A). In 
contrast, many more Neurog3+ progenitor cells were 
observed in the  PRMT1indΔIEC crypts (Fig. 6A). Quantita-
tive analysis revealed that the Neurog3+ progenitor cells 
in the  PRMT1indΔIEC mice were about 2.4-fold of those in 
 PRMT1fl/fl mice at day 14 after the initiation of tamox-
ifen treatment (Fig.  6B), similar to the change observed 
for mature EECs (Fig. 5B). Thus, PRMT1 likely regulates 
EEC cell number by controlling Neurog3 gene expression 
and the number of Neurog3+ progenitor cells.
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Fig. 5 Inducible deletion of PRMT1 in the intestinal epithelium dramatically increases enteroendocrine cells (EECs) in adult small intestine. 
A Immunofluorescent staining for CHGA in small intestinal cross‑sections from  PRMT1indΔIEC and  PRMT1fl/fl littermates at day 14 after the first 
tamoxifen injection as diagramed in Fig. 1A. The CHGA‑labeling stained EEC cells red as indicated by arrows, and the DNA was stained blue 
with DAPI. B Quantification of CHGA + cells showed that PRMT1 deletion in adult intestinal epithelium dramatically increased the number of EECs. 
Multiple sections per animal were analyzed for each group. The values were presented as mean ± SEM with n = 3–4 mice per group. ***p < 0.001. 
Scale bars; 100 μm. CHGA: Chromogranin. C Immunofluorescent staining for serotonin in small intestinal cross‑sections from  PRMT1indΔIEC 
and  PRMT1fl/fl littermates at day 14 after the first tamoxifen injection as diagramed in Fig. 1A. The serotonin‑positive cells were stained green 
as indicated by arrows, and the DNA was stained blue with DAPI. D Quantification of serotonin‑positive cells showed that PRMT1 deletion in adult 
intestinal epithelium increased the number of serotonin‑positive cells, the most abundant subtype of EECs. Multiple sections per animal were 
analyzed for each group. The values were presented as mean ± SEM with n = 3–4 mice per group. ****p < 0.0001. Scale bars; 100 μm
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Discussion
Cell fate specification and differentiation in adult intes-
tine rely on a complex regulatory network of transcrip-
tion factors and distinct epigenetic landscapes. Whereas 
many transcription factors involved in enteroendocrine 
cell differentiation have been identified [17–19, 26, 27, 
29, 30], much less is known about epigenetic contribu-
tions. Here, we have revealed a novel role for PRMT1, 
a predominant histone arginine methyltransferase, in 
enteroendocrine cell fate determination in adult mouse 
small intestine.

We previously reported that intestinal epithelial 
PRMT1 knockout altered the structure and epithe-
lial homeostasis in the intestine [38, 39]. Surprisingly, 
PRMT1 deletion increases cell proliferation in adult 
intestine, contrary to our expectation based on studies 
during intestinal remodeling during Xenopus metamor-
phosis, which is equivalent to the period of 3–4  weeks 

around birth in mouse [40, 47]. This prompted us to 
investigate the potential molecular mechanism under-
lying PRMT1 function in adult mouse small intestinal 
homeostasis. Our RNA-Seq data revealed that tamox-
ifen-induced PRMT1 knockout in adult mouse intestinal 
epithelium led to markedly altered transcriptome at day 
7 and day 14. Interestingly, there were many transient 
DEGs at day 7 after initiating tamoxifen treatment, which 
might be due to the fact that tamoxifen-induced activa-
tion of Cre can lead to genome toxicity [41].

Our analysis of the upregulates DEGs in 
 PRMT1indΔIEC crypts at day 14 after the first tamoxifen 
injection unexpectedly revealed that the most signifi-
cantly enriched GO terms and KEGG pathways were 
mostly associated with EECs and that these expression 
profile in PRMT1 knockout crypts resemble the enrich-
ments due to alteration in the levels of Neurog3, a criti-
cal regulator of EEC fate [26]. Consistently, we found 

Fig. 6 Neurogenin 3‑positive progenitor cells are increased in PRMT1‑deficient adult small intestine. A Neurogenin 3 situ hybridization to detect 
enteroendocrine progenitor cells in small intestinal sections from  PRMT1indΔIEC and  PRMT1fl/fl littermates at day 14 after the first tamoxifen injection 
as diagramed in Fig. 1A. Right panels showed enlarged photo of the boxed area in the left panels. The Neurogenin 3‑positive cells were stained 
red, DNA was stained blue with DAPI, and plasma membrane was stained white with an E‑cadherin antibody. Note that Neurogenin3+ cells were 
located exclusively in the crypts and were much more abundant in  PRMT1indΔIEC crypts. B Quantification of Neurogenin3+ cells showed that PRMT1 
deletion significantly increased enteroendocrine progenitor cells. Multiple sections per animal were analyzed for each group. The values were 
presented as mean ± SEM with n = 3–4 mice per group. ****p < 0.0001. Scale bars: 100 μm
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that EEC number was increased in the PRMT1 knock-
out intestine, accompanied by increased expression 
of enteroendocrine-specific hormones and transcrip-
tion factors. Importantly, both Neurog3 expression 
and Neurog3-positive enteroendocrine progenitor 
cells were also increased in small intestinal crypt of 
PRMT1 knockout mice, consistent with the report 
that high Neurog3 gene dosage enforces the commit-
ment of secretory progenitors to an EE lineage [26]. 
High Neurog3 gene dosage was also reported to con-
strain goblet cell lineage potential [26, 48]. However, 
our RNA-seq data did not find any goblet cell markers 
such as Muc2, Tff3, or goblet cell lineage transcription 
factors Gfi1 and Spdef [49, 50] among the DEGs (Tables 
S4), in agreement with our previously studies on Muc2 
expression and the total number of goblet cells remain 
unchanged in  PRMT1indΔIEC small intestine [38]. Of 
note, intestinal epithelium-specific knockout of Neu-
rog3 in mice depletes EECs without affecting nonen-
docrine epithelial cell types [24, 45], indicating that 
a complex network of factors controls the secretory 
progenitor’s fate choice. Our results thus suggest that 
PRMT1 not only control EEC development via Neurog3 
pathway and also likely also affect other intestinal cells 
via other pathways. Interestingly, our previously study 
reported a region specific effects of PRMT1 knockout 
on goblet cells [38]. Here, we observed that PRMT1 
also has a region-specific role on EEC differentiation 
and/or maintenance. Loss of PRMT1 in adult intestinal 
epithelium increases EECs in the small intestinal but no 
colon. The small intestine and colon differ significantly, 
such as the hormones produced, the nutrient absorbed, 
and the epithelium structure with colon having crypts 

but lacking villi [1]. The question how these regional 
differences are established remains to be addressed.

Neurog3 has been shown to be expressed transiently 
in endocrine progenitor cells in the pancreas and con-
trols pancreatic islet cell development and differentiation 
[51–53]. Interestingly, pancreas-specific PRMT1 knock-
out mouse embryos exhibit prolonged Neurog3 expres-
sion, accompanied by pancreatic hypoplasia after birth 
[54] and PRMT1 methylation of arginine 65 of Neurog3 
has been reported to be required for pancreatic endo-
crine development of human embryonic stem cell [55]. 
The loss of PRMT1 leads to Neurog3 accumulation in 
the cytoplasm and decreases the transcriptional activity 
of Neurog3 without affecting Neurog3 mRNA level [54, 
55]. This seems to be different from our findings in the 
intestine where the loss of PRMT1 in intestinal epithe-
lium increases Neurog3 mRNA level and Neurog3+ cells, 
as well as their subsequent differentiation into mature 
EECs. Thus, PRMT1 appears to regulate Neurog3 to 
affect EEC development in an organ-dependent manner. 
In the intestine, PRMT1 suppresses enteroendocrine lin-
eage development. PRMT1 likely inhibits the expression 
of Neurog3 directly or indirectly. This in turn prevents 
the formation of Neurog3-postive progenitor cells and/
or their proliferation, leading to fewer progenitor cells 
to differentiate into EECs (Fig.  7). Further studies are 
needed to determine how PRMT1 affect Neurog3 expres-
sion and EEC differentiation in the small intestine.

Conclusions
Our RNA-Seq analyses have revealed that the epigenetic 
enzyme PRMT1 plays an important role in regulating 
the transcriptome of adult mouse small intestine. More 

Fig. 7 A proposed model for the role of PRMT1 in small intestinal enteroendocrine cell development. PRMT1 suppresses enteroendocrine 
lineage development, most likely via inhibition of Neurog3 expression through yet unknown mechanism. This may in turn inhibit the formation 
of Neurog3‑postive progenitor cells and/or their proliferation, leading to fewer progenitor cells to differentiate into EECs. Neurogenin 3: Neurog3. 
EEC: Enteroendocrine cells
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importantly, we have uncovered a novel role of PRMT1 
in controlling intestinal enteroendocrine cell develop-
ment and/or homeostasis in adult mice, most likely via 
inhibition of Neurogenin 3-mediated commitment to 
EEC lineage. Given the critical roles of gut hormones 
and peptides in regulating physiological functions, such 
as nutrient intake, lipid adsorption, and glucose homeo-
stasis, and the involvement of EECs in obesity and diabe-
tes, our results suggest that targeting PRMT1 may offer 
a novel strategy to control EEC specification to prevent 
and/or treat human metabolic diseases.

Materials and methods
Animals
Mice carrying a LoxP-flanked PRMT1 allele  (PRMT1fl/

fl) and intestinal epithelium-specific PRMT1 knockout 
mice were generated as described previously [38, 39]. 
Briefly, PRMT1 knockout mice were generated by cross-
ing  PRMT1fl/fl mice with transgenic mice carrying either 
a constitutively active Cre recombinase under the con-
trol of the villin promoter (Vil-Cre) (The Jackson Lab), 
or tamoxifen-inducible Cre, active  CreERT2, under the 
same promoter (Vil-CreERT2) (The Jackson Lab). To 
active  CreERT2, adult  PRMT1fl/fl mice and mice of inter-
est  (PRMT1fl/fl; vil-CreERT2, henceforth referred to as 
 PRMT1indΔIEC) were injected intra-peritoneally (IP) with 
tamoxifen (T5648, Sigma–Aldrich; 2 mg each mouse) for 
up to 5 consecutive days. The mice were euthanized at the 
indicated time points after the first tamoxifen injection at 
day 0 (Fig. 1A). All mice used in this study were age- and 
gender- matched between PRMT1 knockout and con-
trol. All animal care and procedures were approved by 
the Animal Use and Care Committee of Eunice Kennedy 
Shriver National Institute of Child Health and Human 
Development (NICHD), National Institutes of Health 
(NIH).

Genotyping
Mouse tail tips were used to isolate genomic DNA with 
QuickExtract DNA extraction solution (25887, Biosearch 
technologies). The DNA was used for PCR genotyping 
with primers for PRMT1, Cre and CreERT2 as described 
previously [38, 39]. The PCR products were analyzed 
with 2% agarose gel electrophoresis to determine the 
genotype based on the sizes of the PCR products.

Histological processing and immunofluorescent staining
Isolated intestine was flushed with ice-cold 1X phos-
phate-buffered saline (PBS) and fixed in 10% neutral 
buffered formalin (R04586, Sigma–Aldrich) at room 
temperature overnight, then transferred into 70% etha-
nol, processed with a tissue processor (Excelsior AS 
Tissue Processor; Thermo Fisher Scientific), followed 

by embedding in paraffin and then cutting into 5  µm 
sections.

Chromogranin A (ab15160, Abcam; 1:200 dilution) and 
serotonin (ab66047, Abcam, 1:100 dilution) immunofluo-
rescence analyses were performed on paraffin-embedded 
sections (5 m) as described previously [38]. The fluores-
cent pictures for different colors and different sections 
were taken by using a microscope under the same set-
tings and then analyzed with ImageJ software.

RNA scope in situ hybridization
RNA scope, high-resolution RNA in  situ hybridization 
[46], was performed on 5  µm formalin-fixed, paraffin-
embedded sections by using RNAscope Multiplex Fluo-
rescent Reagent Kit (323100, ACDBio). The RNAscope 
probes used were Neurog3 (422401, ACDBio), and the 
positive control probe Ppib (313911, ACDBio), and the 
negative control probe DapB (310043, ACDBio). Alexa 
Fluor® 488 Mouse anti-E-Cadherin (560061, BD Biosci-
ence) was used for visualizing plasma membrane.

Isolation of mouse intestinal crypts
Intestinal crypts were isolated as previous described 
[38] from small intestine and colon of 8–12  weeks old 
 PRMT1fl/fl and  PRMT1indΔIEC mice at different time point 
after tamoxifen injection (Fig.  1A). Briefly, mouse small 
intestine and colon were isolated, opened longitudinally, 
and then cut into small pieces. The small pieces were 
washed twice with cold PBS and then incubated with 
20  mM EDTA in PBS on ice for 40  min. After removal 
of EDTA, the tissue pieces were vigorously suspended 
by using a 10-ml pipette with cold PBS containing 0.1% 
BSA. The supernatant, which was enriched with crypts, 
was filtered through 70  μm cell strainer (352350, Corn-
ing) and centrifuged at 300g for 3 min. The pellets were 
resuspended in TRIzol™ Reagent (15596026, Invitrogen) 
for RNA isolation.

RNA‑Seq and data analysis
Three biological replicates from the  PRMT1fl/fl and 
 PRMT1indΔIEC mice group for each time point after tamox-
ifen injection (Fig.  1A) were used for RNA extraction. 
Total RNA from small intestinal crypts were isolated as 
described above and extracted by using Direct-zol™ RNA 
Miniprep (R2052, ZYMO Research) according to the 
manufacturer’s instructions. The RNA samples were then 
sent to the NICHD Molecular Genomics Core for library 
preparation and sequencing. Libraries was prepared by 
using the Illumina TruSeq total RNA prep kit with Ribo-
zero kit at the step of ribodepletion and sequenced on 
the Illumina NovaSeq 6000 platform to obtain 100  bp 
paired-end reads for each of the 3 biological replicates, 
respectively. For each sample, reads were identified and 
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mapped onto the mm10 (Gencode M26) assembly of 
mouse genome by using STAR software (v2.7.3). Quan-
tification of gene expression was determined by HTSeq 
software featurecounts v1.6.4 and gene annotations from 
Gencode release M26. Normalization of read counts and 
differential gene expression analysis between  PRMT1fl/

fl and  PRMT1indΔIEC samples were further performed 
by using the R package DESeq2 (v1.38). Genes with an 
adjusted p-value (p-adj) < 0.05 were considered as signifi-
cantly differentially expressed accepting a 5% FDR. Prin-
cipal component analysis (PCA) was performed by using 
the R package DESeq2 (v1.38) package. DEGs between 
PRMT1 knockout and  PRMT1fl/fl mice were plotted on a 
MA plot by using the DESeq2 ggpubr package. To iden-
tify enriched biological processes and pathways among 
the DEGs, the GO and KEGG analyses were performed 
with the bioconductor ClusterProfiler package (v4.6.0). 
Venny 2.1 (https:// bioin fogp. cnb. csic. es/ tools/ venny/) 
was used for visualizing the overlapped genes Venn dia-
grams. The raw datasets were deposited in Gene Expres-
sion Omnibus (GEO) repository (GSE263245).

RT‑qPCR analysis
One  μg total RNA was reverse-transcribed into cDNA 
by using High-Capacity cDNA Reverse-Transcription Kit 
(4368814, Applied Biosystems). The qPCR was then per-
formed by using SYBR Green PCR Master mix (A25742, 
Applied Biosystems) in a total volume of 10  μl on Step 
One Plus Real-Time PCR System (Applied Biosystems) 
with indicated primers (Table S9). Fold changes were cal-
culated by using the ΔΔCT method with β-actin used as 
a control.

Statistical analysis
Statistical significance for the differences between sam-
ples was determined by using a two-tailed unpaired Stu-
dent’s t-test. Except for RNA-Seq, all experiments were 
repeated for at least two times. For the analysis of intes-
tinal cross-sections, individual cross-sections instead 
of individual animals were used as samples for the Stu-
dent’s t-test. Data were presented as the mean ± SEM 
(the standard error of the mean). Prism 10 from Graph-
Pad software was used to calculate P values and plot 
figures. Differences with P values of less than 0.05 were 
considered significant: *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, ns: no significant.
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