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Abstract 

Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have 
been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental 
processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. 
Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer 
progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabo-
lism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings 
highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and cir-
cRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been 
frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will 
discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modula-
tion observed in health disorders.
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Polyamines generalities
Polyamines (PA) are aliphatic compounds with amino 
groups at both ends of their molecular structure, found 
widely in almost all living organisms. These small poly-
cations play a vital role in driving proper cell prolif-
eration and differentiation in prokaryotes [1–3] and 
eukaryotes [4]. Among PA the most prevalent in animal 
cells are putrescine (Put), spermidine (Spd), and sper-
mine (Spm). Under physiological pH condition, PA are 
positively charged and form weak associations with nega-
tively charged intracellular molecules, including nucleic 
acids, phospholipids, and ATP. Of particular interest, 
PA exhibit a higher affinity for RNA, thereby influencing 

protein translation and inducing alterations in mRNA 
structure [5].

Due to their essential role in cell growth, PA are nota-
bly abundant in actively proliferating cells [6], in fact, in 
tumour cells PA metabolism is often dysregulated, indi-
cating that their elevated content is necessary for trans-
formation and tumour progression [7, 8]. Recently, new 
data are elucidating the mechanisms through which PA 
can establish a tumour-permissive microenvironment 
[9]. Notably, PA appear to exert a pivotal influence on 
the regulation of antitumour immune response, which 
becomes unresponsive to the immune checkpoint block-
ade, leading to the existence of immunologically ‘cold’ 
tumours [9]. Interestingly, PA levels can be subjected to 
alteration based on factors such as microbiota composi-
tion, dietary PA availability and tissue’s responsiveness to 
its local microenvironment, contributing to tumour pro-
gression [9]. Natural PA can prevent oxidative damage 
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to DNA and phospholipids by functioning as free radical 
scavengers [10–16]. In fact, increase level of catabolic PA 
enzymes sensitizes tumour cells to irradiation [17–20]. In 
brain, PA play a pivotal role during the development and 
as modulators of different ion channels [21–24]. Indeed, 
intracellular Spm acts at µM concentrations as a signifi-
cant blocker of inwardly rectifying potassium channels 
(Kir) and a rise of its content causes an increase in chan-
nel gating and rectification, which in turn leads to cellular 
excitability of neurons and muscle fibers [25]. Recently an 
additional mechanism of regulation on glutamate iono-
tropic channels has been described. This mechanism 
involves ancillary proteins such as TARP, cornichons, 
neuropilin and tolloid-like proteins (NETOs) that atten-
uate channel blockage allowing PA to exit the pore. It 
follows that the permeation of PA occurs at membrane 
potentials that are more negative and therefore more 
physiologically relevant [24]. Polyamines also have the 
capacity to regulate the assembly of certain acetylcho-
line receptors containing negatively charged amino acids 
within the α4 or α7 cytosolic loop [26] and control the 
functioning of glutamate receptors, including NMDA, 
AMPA and kainate [21, 27]. Despite their recognized role 
in brain, it is important to note that PA are unable to pass 
the brain–blood barrier (BBB) [28, 29]. Polyamine trans-
port into the brain involves a variety of transport mecha-
nisms, such as large pores like connexins and pannexin 
hemichannels, as well as specific transporters like poly-
specific organic cation transporters (OCTs) belonging 
to the solute carrier (SLC) 22A1-3 family. These trans-
porters play a crucial role in facilitating the entry of PA 
[29, 30]. Polyamines are important also in the regulation 
of diabetes. Indeed, Spd and Spm can also interact with 
insulin-like growth factor-1, promoting an increase in 
pro-insulin gene transcription and regulating insulin sig-
nalling [31]. Moreover, PA exert their function in diabetes 
in part by regulating hypusination process. Hypusination 
is a post-translational modification of a conserved lysine 
residue of the translation factor eIF5A that depends on 
the presence of Spd [32]. Indeed, hypusination is essential 
for proper development of the exocrine pancreas as well 
as endocrine function, indicating that a scarcity of hypu-
sinated eIF5A (eIF5Ahyp) has detrimental consequences 
[33]. However, an overabundance of eIF5Ahyp exacer-
bates the hallmarks of the diabetic phenotype. In general, 
elevated levels of PA are reported in both exocrine and 
endocrine cells of the pancreas, which may contribute to 
endoplasmic reticulum stress, oxidative stress, inflamma-
tory response, and autophagy [34]. Finally, supplementa-
tion with either Spd or Spm has been shown to effectively 
enhance glucose homeostasis and insulin sensitivity 
[35]. Given their pleiotropic roles, intracellular PA levels 
need to be kept within a specific range, that is crucial for 

optimal cellular function, by balancing their transport in 
and out of cells and metabolism. The physiological levels 
of PA can vary depending on the tissue and/or cell type. 
For instance, in mouse brain tissues, physiological level 
of Put is estimated to be around 10  nmol/g, while both 
Spm and Spd contents are near 250/300  nmol/g [36]. 
Conversely, in C2C12 murine myoblasts, PA are less con-
centrated, with Put level ranging around 1 nmol/g, while 
both Spm and Spd contents are in the range of 10 nmol/g 
[37].

Polyamine metabolism and transport
Given the multifaceted functions of PA, the regulation 
of PA homeostasis through biosynthesis, catabolism and 
transport is very strict. The enzymes and transporters 
responsible for controlling intracellular PA pools are sub-
ject to stringent control mechanisms operating at various 
levels, including transcription, translation, and degrada-
tion. Each level of regulation possesses its own feedback 
mechanisms that specifically responds to alterations in 
intracellular PA levels. Consequently, the dysregulation 
of PA metabolic enzymes can have adverse effects on 
human health, including the development of conditions 
such as cancer, muscle disease, and neurodegeneration 
[30, 38–40].

Polyamines biosynthesis is regulated by the enzymes 
ornithine decarboxylase (ODC), which catalyses the con-
version of Ornithine into Put, and by two distinct ami-
nopropyl transferases, Spd synthase (SRM) and Spm 
synthase (SMS), which add an aminopropyl group to Put 
and Spd, respectively (Fig. 1). ODC is the first rate-limit-
ing enzyme in PA biosynthesis and various mechanisms, 
including transcription, mRNA stability, translation, and 
degradation, tightly regulate ODC levels to quickly adapt 
to cellular requirements [41]. Three antizymes (OAZ1, 
OAZ2 and OAZ3) and two antizyme inhibitors (AZIN1 
and AZIN2) mediates the post-translational control of 
ODC [42]. OAZ inhibits ODC dimerization and pro-
motes its proteasomal degradation [43]. On the other 
hand, antizyme inhibitors, homologous proteins to ODC 
but lacking enzymatic activity, interact with OAZs even 
more efficiently than ODC itself, thereby counteract-
ing their inhibitory effect [44, 45]. Another key enzyme 
in PA biosynthesis is S-adenosylmethionine decarboxy-
lase (AMD1), responsible for generating decarboxy-
lated S-adenosylmethionine (dcSAM), the aminopropyl 
donor for SRM and SMS. On the other hand, spermi-
dine/spermine  N1-acetyltransferase (SAT1), peroxisomal 
 N1-acetyl-spermine/spermidine oxidase (PAOX), and 
spermine oxidase (SMOX) are the three enzymes of 
PA catabolism [18, 46, 47]. Both Spm and Spd receive 
acetyl groups from acetyl-coenzymeA at the  N1 posi-
tion via the enzyme SAT1, resulting in the formation of 
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 N1-acetylspermidine and  N1-acetylspermine, respec-
tively. Subsequently PAOX oxidises these substrates 
to produce the final products Spd and Put, as well as 
3-aceto-aminopropanal (3-AAP) and hydrogen perox-
ide  (H2O2) [48, 49]. The third catabolic enzyme SMOX 
directly oxidises Spm to produce Spd, 3-aminopropanal 
(3-AP) and  H2O2 [48].

Polyamines are imported into cells through multiple 
PA transport systems (PTSs) [50]. There are two pro-
posed mechanisms for PA import: transport through the 
plasma membrane and endocytic routes. Transporters 
located on the plasma membrane belong to the solute 
carrier (SLC) and ATP-binding cassette (ABC) families 
[51–53]. Among the SLC transporters, only SLC18B1 
has undergone biochemical validation as a PA trans-
porter. SLC18B1 is a vesicular transporter (VPAT) with 
widespread expression in humans, particularly in the 
lung, placenta, and adrenal gland. Biochemical studies 
using purified SLC18B1 protein in proteoliposomes have 
demonstrated its active transport of Spd and Spm [54]. 
SLC3A2, a plasma membrane transporter also called 
DAX, has been found involved in exporting Put and 
importing arginine in human colorectal carcinoma cells 
[55].The SLC12A8A gene encoding the cation-chloride 
cotransporter 9 isoform a (CCC9a), is widely expressed in 
mammals and is primarily localized in intracellular com-
partments. However, certain splice variants can reach the 
plasma membrane. Overexpression of SLC12A8A gene 
in HEK cells has been shown to enhance the uptake of 

PA (mainly Spd) and aminoacids [56]. Additionally, in the 
brain, PA are synthesized endogenously in neurons and 
then exported to astrocytes [29].

Recent studies have identified a novel family of trans-
porters that play a crucial role in the mammalian PA 
uptake pathway, potentially operating in conjunction 
with the previously proposed endosomal PA uptake path-
ways. This newly identified family includes two widely 
distributed transporters known as ATPase cation trans-
porting 13A2/3 (ATP13A2 and ATP13A3), which belong 
to the P5B-ATPase family [53, 57, 58]. It has been dem-
onstrated that ATP13A2 transport PA, exhibiting the 
highest affinity for Spm and Spd [53].

Interestingly, OAZs and AZINs are able to modulate 
the PA plasma membrane transport in a negative and 
positive fashion, respectively [59, 60].

Alteration of PA metabolism can result from physi-
ological stimuli as well as from pathological conditions 
like cancer, inflammation, and neurodegeneration [38, 
40, 61–63]. Aberrant PA metabolism has been reported 
in diabetic patients and animal models of diabetes. In a 
clinical study in patients, serum Put has been found sig-
nificantly elevated in patients with type 2 diabetes (T2D) 
compared to those without diabetes and Spm was sig-
nificantly associated with fasting insulin levels. Moreover, 
serum Put and Spm levels were associated with a higher 
risk of T2D [64]. Polyamines have been shown to play a 
role in the development of diabetic complications, such 
as diabetic nephropathy, by promoting inflammation and 

Fig. 1 Schematic diagram of polyamine metabolism. Biosynthetic and catabolic pathways are shown in green and in red respectively. Stars 
highlight the presence of a ncRNA regulation
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fibrosis in the kidneys [34]. A recent study [65] demon-
strated that PA biosynthesis inhibition can safeguards 
β-cell function. This conclusion stems from a compre-
hensive approach that involved integrated experiments 
with human β-cell-specific knockout mice, in  vitro cul-
tures of human islets, and a multicentre clinical trial. The 
findings suggest that such inhibition could offer a safe 
strategy to enhance survival rates among individuals with 
recent-onset type 1 diabetes [65].

Abnormal PA metabolism has also been linked to the 
development and progression of various types of cancer. 
Among the PA-related genes, ODC is in several cases 
overexpressed [66, 67], while SAT1 could be both down- 
or up-regulated [9, 68–70]. Moreover, while AZs have 
been reported to function as tumour suppressor and to 
negatively regulate tumour cell proliferation and trans-
formation [71], the AZIN1 RNA editing, a post transcrip-
tional modification that enhances its activity, has been 
found higher in many different cancers spanning from 
hepatocellular carcinomas to lung cancer and is associ-
ated to increased transformation and tumorigenesis [72, 
73]. Furthermore, abnormal PA metabolism has been 
implicated in the pathogenesis of several neurodegen-
erative diseases, including Snyder–Robinson syndrome, 
Bachmann–Bupp syndrome, and Parkinson’s disease 
(PD). The Snyder–Robinson syndrome is a genetic condi-
tion that is linked to a mutation in a PA metabolic gene. 
This X-linked mental retardation and developmental dis-
order is brought on by mutations in the SMS gene that 
is located on chromosome X in the Xp22.1 region [74]. 
Bachmann–Bupp Syndrome is inherited in an autoso-
mal dominant way and is associated to ODC1 pathogenic 
variant. Bachmann–Bupp Syndrome is characterized by 
behavioural abnormalities, feeding difficulties, hypoto-
nia, alopecia, global developmental delay in the moderate 
to severe range [75]. A broad range of studies, encom-
passing human patients, yeast, and mouse models, have 
provided substantial evidence supporting the role of 
defects in the PA pathway in the development of PD [76, 
77]. Prior research has suggested a link between PA and 
PA metabolic enzymes, particularly a decrease in SAT1, 
and the increased aggregation of α-synuclein [77], a hall-
mark of PD. Furthermore, mutations in ATP13A2 gene, 
also known as PARK9 have been associated with Kufor–
Rakeb Syndrome, an early-onset variant of PD [78]. There 
is the proposal that dysfunctional lysosomal PA export 
may serve as a mechanism underlying lysosome-depend-
ent cell death, potentially contributing to neurodegen-
eration [78]. Moreover, AZIN2 has been found increased 
in brains affected by Alzheimer’s disease [79, 80] and 
its depletion leads to a reduction in Put levels, which 
is associated with alterations in motor function. These 

observations imply a role for AZIN2 in the regulation of 
dopaminergic neuron function [81].

Among the mechanisms that fine-tune regulate PA 
metabolic enzymes, emerging findings highlight the 
importance of ncRNAs and the present review will deal 
with microRNA, long noncoding RNA e circRNA in the 
regulation of PA metabolism.

Noncoding RNA: microRNA, lncRNA and circRNA
The discovery of the first noncoding RNA (ncRNA) with 
regulatory function dates back to 1988 when a small bac-
terial RNA from Escherichia coli was identified, capable 
of regulating the transcription of the micF gene [82]. 
Since then, genomic studies have revealed a large amount 
of DNA that is transcribed but not translated, leading 
to the description of hundreds of regulatory ncRNAs 
[83–85].

The importance of ncRNA is emphasized by the obser-
vation that an increase in the number of ncRNAs corre-
lates with the evolution of vertebrate complexity [86–88].

Regulatory ncRNAs can be divided into three main 
classes based on their length and structure: (1) short 
ncRNA, which are less than 200  nt in length; this class 
includes snoRNA, snRNA, piRNA and microRNA 
(miRNA); (2) long ncRNAs, which exceed 200  nt in 
length; (3) circular RNAs (circRNAs), characterized by 
their circular structure, with variable nucleotide lengths 
(Fig. 2). Noncoding RNAs take part in the regulation of 
many biological processes, from proliferation to differen-
tiation and cell death [89, 90]. Indeed, they are emerging 
as key regulators of chromatin accessibility, transcription, 
post-transcriptional regulation, and protein synthesis. 
Through their activities, ncRNAs can drive the expres-
sion/repression of many cellular targets with high tissue, 
cell and time specificity [91–94].

MicroRNAs are single-stranded ncRNAs of 22 nucleo-
tides able to post-transcriptional regulate gene expres-
sion by binding to target mRNAs. Their corresponding 
genes are transcribed as miRNA precursors called pri-
miRNA by RNA Polymerase II (RNAPol II) and their 
transcripts are spliced, polyadenylated and further matu-
rated to give duplex miRNA of 22 nt [95]. One of the two 
filaments (the guide strand) is translocated to the RNA-
induced silencing complex (RISC) where it binds to a 
target mRNA, leading to the degradation of the comple-
mentary strand. The RISC complex can guide the mRNA 
silencing through different mechanisms, depending also 
on the grade of complementarity between the mRNA 
and the miRNA. In particular, the mRNA-miRNA pair-
ing results in one of the following events: (1) cutting of 
the mRNA strand, leading to degradation; (2) destabili-
zation of the mRNA through the shortening of its polyA 
tail; (3) repression of translation. Imperfect pairing of 
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miRNAs with the 3′ untranslated region (3′UTR) of the 
target mRNA cause a blockade of mRNA translation, 
while perfect matching leads to mRNA degradation [96]. 
MicroRNAs can catalyse multiple rounds of RNA cleav-
age therefore amplifying their effects. High complemen-
tarity with the 5′ end of the miRNA seed region seems to 
be crucial for the recognition of target mRNAs, whereas 
pairing at the 3′ end of the miRNA can be more variable 
[97, 98]. Moreover, a single miRNA can have different 
targets in a biological pathway and on the other hands, a 
single gene can be targeted by multiple miRNA [96].

Since the identification of the first miRNA, let4, in Cae-
norhabditis elegans [99, 100], which plays a crucial role 
in worm development, our understanding of the roles of 
miRNAs has continued to increase. Nowadays, there are 
plenty of documentation indicating that miRNA partici-
pate in the regulation of many cellular processes and dis-
eases, ranging from development to cancer (for a review 
see [101]).

Long noncoding RNAs (lncRNAs) are a very hetero-
geneous group of molecules that vary in size, subcellu-
lar location, and function. Their lengths range from few 
hundred nucleotides (e.g. 340 nucleotides of 7SK) to sev-
eral thousands (e.g. 90 kb of kcnq1ot1). They can be tran-
scribed by RNA polymerase II or III, and be either spliced 
or not [102]. Regarding the subcellular localization, lncR-
NAs can be localized in the nucleus or in the cytoplasm. 
Nuclear lncRNAs are usually regulators of transcription 

and of chromatin architectures, able to bind transcription 
factors, chromatin remodelers and specific regulatory 
regions on promoters and enhancers [93, 103, 104]. For 
example, some nuclear lncRNAs recruit gene silencing 
complexes, like PRC1 and PRC2 to target gene promot-
ers. Other lncRNAs, such as GAS5, act as decoys, pre-
cluding the access of regulatory proteins to DNA [105]. 
In contrast, cytoplasmic lncRNAs are involved in post-
transcriptional control, working as miRNA sponge, regu-
lating the abundance and activity of specific miRNAs, or 
modulating mRNA stability, by forming duplexes with 
the 3′UTRs of target mRNAs [106, 107]. Due to their 
different mechanisms of action, lncRNAs are involved in 
many pathophysiological processes, spanning from cel-
lular differentiation and pluripotency to the development 
of cancer.

Circular RNAs are covalently closed single strand 
molecules of RNA that lack the characteristic signature 
of many cellular lncRNAs and mRNAs such free ends, 
5′cap and polyadenylated tail. They arise from back-
splicing of exon-exon junctions of pre-mRNAs. CircR-
NAs can vary in length, ranging from less than 200 nt to 
more than 3000 nt [108], and may contain one or more 
exons, as well as introns. The generation of circRNAs 
is dependent on the presence of both cis- and trans-
acting factors. Among the cis-acting factors, comple-
mentary sequences (such as Alu repeats) in the flanking 
introns are necessary for the back-splicing mechanism. 

Fig. 2 Schematic diagram of regulatory noncoding RNA classification. The key characteristics of each group are reported in the squared boxes
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Trans acting factors can influence circRNA levels 
through various mechanisms: (1) affecting the probabil-
ity of base pairing of reverse complementary sequences 
[e.g. ADAR1, which mediates adenine to inosine (A-to-
I) conversions]; (2) stabilizing the double-strand RNA 
duplex (e.g. NF90/NF110); (3) or disrupting the double-
strand RNA duplex (e.g. DHX9) [109].

Circular RNAs are usually more stable of their linear 
counterpart [110]. Their formation is dynamically regu-
lated in a tissue-specific and developmentally depend-
ent manner [92]. The precise mechanisms governing 
circRNA degradation are not yet fully understood and 
appear to be multifaceted. Degradation mechanisms 
may involve the action of Ago2, RNase L (a cytoplas-
mic endonuclease) or, in the case of circRNA modified 
with the  N6-methyladenosine  (m6A), the ribonuclease 
complex RNase P/MRP, mediated by the proteins like 
methyladenosine RNA binding protein F2 (YTHDF2) 
and reactive intermediate imine deaminase A homolog 
(RIDA) [111].

The most documented role of circRNA is their func-
tion as sponge for miRNAs, although they have also 
been reported to act as sponges for RNA binding pro-
teins. A specific class of intronic circRNAs retained 
in the nucleus can act as transcriptional regulators by 
interacting with U1 small nuclear ribonucleoprotein 
(snRNP), RNAPol II, and the promoters of their paren-
tal genes to enhance transcription. The importance of 
circRNA is especially crucial in brain development and 
function, as they are notably enriched in brain com-
pared to other organs and a major fraction of circRNA 
derive from genes expressed in neurons [112].

Accumulating evidence demonstrated that circRNAs 
could encode functional polypeptides and are actively 
translated through mechanisms independent of 5′cap-
ping, such as those mediated by internal ribosomal 
entry sites (IRESs) or   m6A modification [113, 114]. 
In conclusion, miRNAs, lncRNAs, and circRNAs are 
involved in fine-tuned mechanisms controlling gene 
transcription and protein expression and frequently 
their function involves intricate interactions among 
them forming an endogenous RNA network. These 
complex networks comprise not only lncRNA/miRNA, 
circRNA/miRNA interactions but also lncRNA/
miRNA/circRNA interactions, amplifying the complex-
ity of the regulation. This crosstalk between different 
ncRNAs is particularly significant in the brain, where 
it regulates not only neuronal differentiation but also 
neuronal plasticity and synaptogenesis [109]. Moreo-
ver, perturbation of levels and interactions of the ncR-
NAs could lead to pathologic events like apoptosis, 
inflammation, and neurodegeneration. In the following 
paragraphs the involvement of miRNAs, lncRNAs and 

circRNAs in the regulation of PA genes is specifically 
discussed.

Noncoding RNA regulation of polyamine 
metabolism in cancer
As reported above, PA play a central role in cell prolif-
eration, and it is not surprising that changes in their 
levels and the activity of their metabolic enzymes have 
been frequently described in many cancer types [115]. 
In details, SMS dysregulation was associated with car-
cinogenesis and in particular its high expression was 
related to poor survival and increased risk of metastasis 
in triple-negative breast cancer [116]. In breast cancer, 
Chen and co-workers [117] identified a specific regula-
tory mechanism in which the loss of miR-3613-3p leads 
to an increase in SMS mRNA levels (Table 1). The miR-
3613-3p gene is often deleted in tumour samples, and 
bioinformatic analysis identified SMS as one of its target 
mRNAs. This regulatory effect of miR-3613-3p on SMS 
has been validated in breast cancer tissues [117].

In colorectal cancer, a more complex network has been 
identified, where miR-378a was found to inhibit ODC1 
(Table 1) both directly by binding to its 3′UTR and indi-
rectly by inhibiting a transcription factor that activates 
ODC1 transcription. In particular, miR-378a targets 
FOXQ1, which is responsible for activating the transcrip-
tion of c-MYC, a key transcriptional activator of ODC1 
[118].

The miR-378a is the most downregulated microRNA 
in colorectal cancer tissues, suggesting its potential pro-
tective and anti-proliferative role. Moreover, miR-378a 
induces apoptosis and inhibits proliferation and migra-
tion. By preventing the specific binding of miR-378a to 
ODC1 the authors demonstrated that ODC1 is essen-
tial to mediate miR378a anticancer activity. The activity 
of ODC1 can be modulated also indirectly by acting on 
OAZ and AZIN. Indeed, for example in colon cancer, it 
has been demonstrated that the  OAZ2 mRNA stability 
is negatively regulated by miR-34a that directly targets 
OAZ2 3′UTR [119]. This can be one of the mechanisms 
through which miR-34a exerts some of its pro-tumoral 
functions.

In a gastric cancer cell model, miR-124 expression is 
significantly downregulated through epigenetic mecha-
nisms, and a search for its targets identified SMOX 
mRNA (Table  1). Indeed, miR-124 directly binds to the 
3′UTR of SMOX. Accordingly, SMOX activity is upregu-
lated in adenocarcinoma cellular model and the use of a 
demethylating agent can restore miR-124 expression and 
downregulate SMOX [120].

In the pituitary adenomas, the second most common 
intracranial tumour, PA biosynthesis and in particular 
SAT1 expression has been found altered. A search for 
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dysregulated microRNA in these tumours, compared to 
normal pituitary tissue, identified five microRNAs with 
abnormal expression. Among them, miR-199a-5p was 
significantly downregulated. To functional prove miR-
199a-5p effect, the authors demonstrated that overex-
pression of miR-199a-5p suppressed cell differentiation 
and invasive behaviour of pituitary tumour cells. Inter-
estingly, the miR-199a-5p overexpression downregulated 
SAT1 protein and mRNA levels (Table 1) [121].

In all the above-mentioned experimental settings 
microRNAs were found aberrantly downregulated in 
different tumours, but on the contrary the miR-210 has 
been found upregulated in clear cell renal carcinoma, 
[122], as well as in other malignancies [123]. To get inside 

in the functions of miR-210, the authors performed a 
metabolomic analysis in proximal tubular cells after 
miR-210 overexpression and interestingly, among the 
altered metabolites, they identified also the PA Put and 
Spd. Even if the authors did not address the specific tar-
get genes of miR-210, its impact on PA metabolism was 
clearly demonstrated [123].

Collectively in five different cancer models of both 
human and mouse origin, alterations in microRNA have 
been associated to key enzymes in PA metabolism, high-
lighting the important role of PA in sustaining cellular 
proliferation and cancer development.

Furthermore, also the role of lncRNAs in the regula-
tion of PA metabolism has been investigated mainly in 

Table 1 Regulation of genes involved in polyamine metabolism by ncRNA. Genes are reported in alphabetic order

Gene ncRNA Cell/tissue type Disease Model organism Effect References

Adenosylmethionine 
decarboxylase 1 (AMD1)

miR-762 Embrionic stem cell – Mouse ↓ [134]

Antizyme inhibitor 1 
(AZIN1)

miR-433 Cardiac fibroblasts Cardiac fibrosis Mouse ↓ [149]

circNFIB Cardiac fibroblasts Cardiac fibrosis Mouse ↑ [149]

circMap4k2 Heart left ventricule, car-
diomyocytes, fibroblasts

Heart failure Mouse ↑ [159]

miR-106a-3p Heart left ventricule, car-
diomyocytes, fibroblasts

Heart failure Mouse ↓ [159]

MALAT1 Liver immortalized cell 
lines

Ischemia–reperfu-
sion (IR)

Mouse ↑ [152]

miR-150-5p Liver immortalized cell 
lines

Ischemia–reperfu-
sion (IR)

Mouse ↓ [152]

ATPase cation transport-
ing 13A2 (ATP13A3)

miR-130/301 Primary endothelial cells Pulmonary arterial 
hypertension

Human ↓ [142]

N1-acetyl-spermine/sper-
midine oxidase (PAOX)

KIKAT/LINC01061 Kaposi’s sarcoma associ-
ated herpesvirus cell lines

Kaposi’s sarcoma Human ↑ [127]

Ornithine decarboxylase 
antizyme 2 (OAZ2)

miR-34a Colorectal cancer tissue 
and cell lines

Colorectal cancer Human ↓ [119]

Ornitine decarboxylase 
(ODC1)

miR378a Colorectal cancer tissue 
and cell lines

Colorectal cancer Human/mouse ↓ [118]

Spermidine/spermine 
 N1-acetyltransferase 
(SAT1)

miR-199a-5p Pituitary adenomas tissue Pituitary adenomas Human/mouse ↓ [121]

mir-139-5p, mir195, 
mir320c and mir34c-5p

Prefrontal cortex human Psychiatric disease Human ↓ [138]

LINC00265 Osteosarcoma tissue 
and cell lines

Osteosarcoma Human ↑ [124]

ASMTL‐AS1 Lung adenocarcinoma 
cell lines

Lung adenocarci-
noma

Human ↑ [125]

lnc-HZ03/miR-hz03 Villous tissues/trophoblas-
tic cells

Recurrent miscarriage Human ↑ [153]

Spermine oxidase (SMOX) miR-124 Gastric cancer cell lines Gastric cancer Human ↓ [120]

mir-139-5p, mir195, 
mir320c and mir34c-5p

Prefrontal cortex human Psychiatric disease Human ↓ [138]

circHIPK2 Neural stem cell Brain ischaemic stroke Mouse ↑ [139]

LVBU Colorectal cancer cell 
lines and tissue

Colorectal cancer Human ↑ [126]

Spermine synthase (SMS) miR-3613-3p Breast cancer cell line 
and tissue

Breast cancer Human ↓ [117]
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cancer models. In several reports, lncRNAs exert their 
effects interacting with and modulating the abundance 
of miRNA. For instance, in an osteosarcoma model, 
it has been described with bioinformatic and clinical 
approaches an interesting pathway where the lncRNA 
LINC00265 is overexpressed leading to a decrease of 
the miR-382-5p. Among the validated miRNA targets 
there is also the enzyme SAT1 (Table  1) [124]. SAT1 
expression has also been found modulated in lung 
adenocarcinoma by another lncRNA, named ASMTL‐
AS1 (Table  1). In this context, ASMTL‐AS1 recruits 
the splicing factor U2AF2 to stabilize SAT1 mRNA, 
promoting ferroptosis [125]. It has to be noted that 
ASMTL‐AS1 is implicated in various tumour types, 
suggesting a potentially similar mechanism in other 
malignancies.

In colorectal carcinoma, a hypoxia-induced lncRNA 
LVBU is highly expressed and correlates with poor cancer 
prognosis. The effect of this lncRNA is exerted through 
the interaction with miR-10a/miR-34c, which protects 
the transcription factor B-cell lymphoma 6 (Bcl-6) from 
degradation. Bcl-6 in turn, inhibits p53-mediated sup-
pression of genes involved in urea cycle and in PA syn-
thesis, including ODC1 (Table 1). It is worth noting that 
urea cycle and PA metabolism alteration occur in various 
tumours, but the underlying deregulation mechanisms 
remain elusive. The induction of the lncRNA LVBU 
if confirmed in other cancers, could represent a com-
mon transforming mechanism and, therefore, a promis-
ing anti-cancer target [126]. It is interesting to note that 
p53 regulates PA metabolism by inducing the catabolic 
enzyme SAT1 and repressing the biosynthetic enzyme 
ODC.

Finally, a complex regulatory mechanism has been 
described in Kaposi’s sarcoma associated herpesvirus 
(KSHV). In this type of cancer, the lncRNA KIKAT/
LINC01061 has been identified as a binding partner of 
KDM4A, a histone lysine trimethyl demethylase known 
as an oncogene in various cancer types. The methyl 
groups removal from H3K9me3 on a promoter region 
by KDM4A is associated with gene upregulation. The 
authors found that KIKAT/LINC01061 interaction with 
KDM4A may mediate relocalization of KDM4A at the 
transcription start site (TSS) of the promoter region, 
leading to the transactivation of target genes. Among 
the genes upregulated by KIKAT/LINC01061 there is 
the PA catabolic enzyme PAOX (Table 1). Indeed, on the 
promoter region of PAOX the overexpression of KIKAT/
LINC01061 leads to a shift of KDM4A peak from –851 to 
–290 nt. The relocation of KDM4A mediated by KIKAT/
LINC01061 on PAOX promoter could be an intriguing 
mechanism involved in the progression of Kaposi’s sar-
coma [127].

Noncoding RNA regulation of polyamine 
metabolism in brain
The role of PA and their metabolic enzyme in brain func-
tion, development and pathology has now emerged [29, 
128–133]. The key biosynthetic enzyme Amd1 is regu-
lated by miR-762 during neuronal progenitor cell dif-
ferentiation, leading to a significant reduction in Amd1 
protein levels (Table  1) [134]. The miR-762, interacting 
with the 3′UTR of Amd1, drives a shift in ribosomal 
load that leads to its translational repression. Mutational 
experiments confirmed that miR-762 is sufficient for 
Amd1 down-regulation [134]. Interestingly, an associa-
tion between the noradrenalin/serotonin and glutamater-
gic neuronal circuits with PA has been investigated [128, 
135, 136], revealing PA as possible protective molecules 
in brain, important to prevent the development of men-
tal disorders and epilepsy [137]. Lopez and colleagues 
[138] have analysed the expression levels of SAT1 and 
SMOX and of some microRNAs that are predicted to tar-
get SMOX and SAT1 (miR-139-5p, miR-195, miR-320c 
and miR-34c-5p) in the prefrontal cortex of suicide com-
pleters compared to psychiatric healthy controls. Their 
findings demonstrated a significant correlation between 
these miRNAs and the expression levels of the PA genes 
(Table 1) [138], highlighting how microRNAs can have a 
key role in neurological diseases also through the regula-
tion of PA genes expression.

A recent study explored the role of the circHIPK2 in 
neural stem cell (NSC) differentiation, a key process 
in brain development, neuronal plasticity, and post-
ischaemic stroke recovery [139]. The study found that 
circHIPK2 expression is downregulated during NSCs 
differentiation, and silencing circHIPK2 appeared to 
downregulate SMOX expression (Table  1). This finding 
is intriguing because SMOX is an important mediator 
in the regulation of cerebral ischaemic injury [140], and 
circHIPK2 may participate in its transcriptional regula-
tion in the context of brain ischaemic stroke.

Noncoding RNA regulation of polyamine 
metabolism in other healthy and pathological 
conditions
Polyamines play a central role also in diabetes mel-
litus, as they prevent the upregulation of glucose and 
ketone and, similarly to insulin, counteract the disease 
[141]. Polyamines also enhance mitochondrial respira-
tion and thereby regulate all major metabolic pathways. 
With the aim to explore the mechanisms underlying the 
deregulation of PA metabolism in diabetes, Kambis and 
colleagues [31] analysed all the overexpressed miRNAs 
in Diabetic Cardiomyopathy and observed their asso-
ciation with PA metabolism. Interestingly, in diabetes 
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mellitus some deregulated microRNAs have been found 
associated to PA metabolism, among them miR-210 and 
miRNA-199a-5p.

Another study shows an interesting bidirectional rela-
tionship between miR-130/301 and the PA transporter 
ATP13A3 (Table  1) [142] in endothelial cells. In fact, 
forced miR-130a expression decreases ATP13A3, while 
the depletion of ATP13A3 induces an increase in miR-
130/301 expression, suggesting a positive feedback loop 
that promotes endothelial cell apoptosis and pulmonary 
arterial hypertension [142].

Fibrosis is the final common pathological outcome of 
many chronic inflammatory diseases, could affect nearly 
every tissue in the body and eventually leads to organ 
malfunction and failure [143]. Several findings high-
lighted that AZIN1 have a role in regulating fibrosis in 
different organs, such as liver [144], heart [145] and kid-
ney [146]. Mechanistically, decreased level of AZIN1 
activated TGF-β1, the major profibrotic factor while 
AZIN1 overexpression suppressed TGF-β signalling and 
the fibrotic response [145]. The regulation of AZIN1, at 
least in the context of renal fibrosis is mediated by the 
miR-433, as the authors demonstrated that overexpres-
sion of miR-433 suppressed Azin1 expression [146].

Two recent papers enriched the picture featuring the 
involvement of circRNAs in the regulation of AZIN1 in 
cardiac fibrosis. Cardiac fibrosis plays a crucial role in the 
development and evolution of heart failure [147] and is 
a common pathological feature of most adverse cardiac 
events such as myocardial infarction and diabetic car-
diomyopathy [148]. In this context, a first paper [149] 
identified a circRNA, named circNFIB able to positively 
regulate AZIN1 by sponging the miR-433, an important 
component of TGF-β/Smad3-signalling and a direct 
regulator of AZIN1. More recently, Yan and colleagues 
(2023) analysed the expression profile of circRNAs after 
surgical ventricular reconstruction (SVR), a therapeu-
tic approach for heart failure, and identified circMap4k2 
(named according to its mother gene, Map4k2) as the 
most upregulated circRNA. CircMap4k2 promotes car-
diac regeneration by acting as microRNA sponge. They 
found that miR-106a-3p, known for regulation of cell 
growth and proliferation in tumours [150] binds to circ-
Map4k2. Moreover, among the predicted targets of 
miR-106a-3p, AZIN1 was the only experimentally con-
firmed target. Thus, circMap4k2 by targeting the miR-
106a-3p/AZIN1 pathway could enhance cardiomyocyte 
regeneration.

Ischemia–reperfusion (IR) is a common pathologi-
cal process in various organs and in liver is an inevita-
ble complication occurring during liver surgeries that 
involves a complex cascade of inflammatory media-
tors [151]. In a mouse model of liver IR, the LncRNA 

MALAT1 has been described to target the miR-150-5p. 
Looking for mRNA targets of miR-150-5p, the authors 
found AZIN1 [152] and demonstrated that AZIN1, miR-
150-5p and MALAT1 constitute a competing endoge-
nous RNA (ceRNA) network in this condition.

Finally, in villous tissues and in trophoblastic cells from 
women with recurrent miscarriage, the lnc-HZ03 and the 
miR-hz03 have been identified forming a positive feed-
back loop upregulating each other. The miR-hz03 could 
also enhance p53 levels by stabilizing its mRNA. The p53 
protein, in turn, induces SAT1 and thus the authors pro-
pose that lnc-HZ03 and miR-hz03 are able to perturbate 
PA metabolism influencing cell viability and apoptosis 
[153].

circRNAs generated from polyamine mRNA 
backsplicing
It deserves a particular mention the circRNAs gener-
ated from backsplicing of PA metabolic gene transcripts. 
In recent years, unbiased RNAseq analysis allowed the 
scientific community to identify many circRNAs differ-
entially expressed especially during brain development 
and in neurologic diseases [113]. The first annotation 
of a circular RNA from a PA gene was in mouse brain 
and ES cells samples by Memczak and co-workers [110] 
(Table  2). This analysis revealed a circRNA of 460 nt 
derived from SMOX gene, named circSMOX, which 
includes exon 2 and 3 of the linear SMOX transcript 
[110]. Afterwards, Ribak-Wolf and colleagues [92] ana-
lysed brain circRNAs during development to assess 
brain-specific circRNA expression, examining 29 data-
sets from both human and mouse. Interestingly, circS-
MOX was found in synaptosomes and in cytoplasm of 
mouse brain samples, during P19 cells differentiation (in 
particular at day 12) and during primary neuron matu-
ration (where circSMOX was consistently detected from 
day 0 to day 28, with a pick at day 14). In 2017, an altered 
expression of circSMOX was described in mouse brain 
after transient focal ischemia by RNAseq analysis [154]. 
In 2018, the first indication of circSMOX expression in a 
tissue outside the brain was reported. It was found to be 
increased in a transcriptomic analysis of a mouse model 
of muscular atrophy [155]. The experimental valida-
tion and characterization of circSMOX was carried out 
in 2020, when its expression was analysed in atrophic 
C2C12 and in two mouse models of ALS [156]. Interest-
ingly, during muscle differentiation, both linear and cir-
cular SMOX showed a similar pattern of distribution, 
reaching their peak at 96 h post induction of differentia-
tion. However, under atrophic condition, a distinct and 
complementary expression profile emerged, with the lin-
ear SMOX transcript decrease and a parallel circSMOX 
increase. This differential expression of circSMOX was 
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also demonstrated in two ALS mouse models, specifically 
FUS and G93A, during the progression of the disease 
[156]. This intriguing observation suggests a possible 
function of circSMOX in ALS etiopathology and, more 
broadly, in atrophic conditions (Fig. 3). To gain a deeper 
understanding of circSMOX, future analysis will be 
required to investigate its specific role, the mechanisms 
governing its expression, and the effects of circSMOX on 

its linear counterpart and PA metabolism. A recent study 
by Han and colleagues demonstrated that circSMOX 
plays a functional role in PC12 cell response to LPS stim-
ulation [157]. Indeed, the authors demonstrated that the 
circRNA expression increases after stimulation and that 
circSMOX interacts with the miR‐340‐5p, functioning 
as a miRNA sponge. Notably, one of the targets of miR‐
340‐5p is the protein SMURF1, an E3-ubiquitin ligase 
implicated in neuroinflammation [158].

Table 2 Evidence of circRNAs arising from genes involved in polyamine metabolism

Gene circRNA Length (nt) Cell types Organism References

SMOX circSMOX 460 Brain and ES cells samples Mouse [110]

Brain (synaptosomes and cytoplasm) P19 cells (day 12 of differentiation) 
primary neuron

Mouse [92]

Transient focal ischemia Mouse [154]

Model of muscular atrophy [155]

Atrophic C2C12 and in two mouse models of ALS [156]

PC12 cell lines Rat [157]

ODC1 hsa_circ_0052603 113 Occipital lobe Human [92]

hsa_circ_0116927 124 SH-SY5Y differentiation [92]

AZIN1 hsa_circ_0135367 115 SH-SY5Y differentiation Human [92]

hsa_circ_0135368 1839 Frontal_cortex

hsa_circ_0135369 1979 Temporal_lobe

hsa_circ_0135370 193 Diencephalon, frontal_cortex, occipital_lobe, parietal_lobe

hsa_circ_0135371 1187 Frontal_cortex

hsa_circ_0135372 320 Cerebellum, occipital_lobe, parietal_lobe, temporal_lobe

hsa_circ_0135373 606 Frontal_cortex, occipital_lobe

hsa_circ_0135374 628 Occipital_lobe

hsa_circ_0135375 802 Diencephalon, frontal_cortex, temporal_lobe

hsa_circ_0135376 999 Cerebellum, diencephalon, frontal_cortex, temporal_lobe

hsa_circ_0085278 292 Cerebellum, diencephalon, parietal_lobe, temporal_lobe,

hsa_circ_0135377 465 Cerebellum, diencephalon, frontal_cortex, occipital_lobe

hsa_circ_0007374 639 Cerebellum, frontal_cortex, occipital_lobe, parietal_lobe, temporal_lobe

hsa_circ_0085280 308 Temporal_lobe

hsa_circ_0135378 690 Frontal_cortex, temporal_lobe

hsa_circ_0135379 172 Sy5y_exp1_D4, SY5Y_exp2_D4

hsa_circ_0135380 5846 Diencephalon

hsa_circ_0008921 455 Hs68_control, Hs68_RNase, diencephalon, K562 [92, 160, 161]

hsa_circ_0004982 371 Hs68_control, Hs68_RNase, WAS2, frontal_cortex, parietal_lobe, Ag04450, Bj, 
Gm12878, K562, Mcf7

[92, 160–162]
[92, 160–162]

hsa_circ_0003304 544 Hs68_control, Hs68_RNase, platelets, cerebellum, diencephalon, frontal_cor-
tex, occipital_lobe, parietal_lobe, temporal_lobe, Ag04450, Bj, Gm12878, 
H1hesc, Hepg2, Huvec, K562, Mcf7

hsa_circ_0085286 138 Diencephalon [92, 161]

mmu_circ_0005622 296 Frontal_cortex Mouse [92]

mmu_circ_0005623 2001 Forebrain

mmu_circ_0005624 780 Forebrain, PN_D01, midbrain

OAZ1 hsa_circ_0109303 173 Parietal_lobe Human [92]

OAZ2 hsa_circ_0104223 765 SY5Y_exp2_D8 Human [92]

hsa_circ_0104224 123 Diencephalon
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Among the  other genes codifying for PA metabolic 
enzymes, ODC1, OAZ1/2 and AZIN1/2 appear to 
give rise to circRNAs (Table  2). Specifically, two circR-
NAs, hsa_circ_0052603 of 113 nt and hsa_circ_0116927 
of 124  nt, originating from the human ODC1 gene, 
have been annotated in the human brain [92]. Hsa_
circ_0052603 was identified in the occipital lobe, while 
hsa_circ_0116927 was detected at day 2 of SH-SY5Y 
cell differentiation [92]. The existence of a circular RNA 
arising from the ODC gene is yet to be confirmed but 
given the significant role of ODC in cancer and in brain 
pathophysiology, its validation will pave the way for fur-
ther studies aimed at understanding the regulation of 
ODC in cancer cells. Moreover, querying circRNA data-
base (http:// www. circb ase. org/) for potential cirRNAs 
arising from OAZ1/2 and AZIN1/2 results in the iden-
tification of numerous potential back-splicing events 
(Table  2). Specifically, OAZ1 yielded one circRNA, 
hsa_circ_0109303, with a length of 173  nt, while OAZ2 
produced two circRNAs, hsa_circ_0104223 and hsa_
circ_0104224, measuring 765 and 123  nt, respectively 
(Table 2). Notably, the AZIN1 gene gave rise to twenty-
one and three different circRNAs in human and mice 
samples, respectively. These circRNAs exhibited vari-
able length spanning from 115 nt of hsa_circ_0135367 to 
5846 nt of hsa_circ_0135380. Interestingly, one of them, 
the circRNA hsa_circ_0135374 is conserved also in mice 
with the name mmu_circ_0005624 [92]. The conserva-
tion of this circRNA between human and mouse sug-
gests a potentially crucial conserved function, warranting 
further investigation. To sum up, among the circRNAs 
generated from backsplicing of PA metabolic gene tran-
scripts, only circSMOX has been experimentally vali-
dated, but, considering the roles that circRNAs have in 

physiology and pathophysiology, the presence of circR-
NAs arising from polyamine genes needs to be deeply 
investigated. Future studies will help to confirm the pres-
ence of circRNAs from PA genes, to understand their 
roles and their influence on the expression of the linear 
counterpart.

Conclusions
The intricate networks of ncRNAs involved in the regula-
tion of PA metabolism are only beginning to be uncov-
ered. Given the multifaceted roles of PA, it would not 
be surprising to discover that numerous others ncRNAs 
are involved in controlling PA biosynthetic and cata-
bolic enzymes. Currently, the emerging picture reveals a 
multi-layered, tissue-specific regulations of PA metabolic 
enzymes, which is often disrupted or loss in pathologi-
cal conditions, particularly in cancers (Table 1). Moreo-
ver, it is important to note that many ncRNAs have the 
characteristic of co-regulating different genes and path-
ways. This feature allows to link the PA metabolism to 
various cellular processes, integrating different stimuli to 
generate a comprehensive and reliable cellular response. 
Finally, this complex network of noncoding RNA inter-
acting with PA metabolism also paves the way for new 
opportunities in therapeutic intervention in the fields of 
neurological and neuromuscular diseases, diabetes and 
cancer.
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