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Abstract 

Background Alzheimer’s disease (AD) diagnosis relies on clinical symptoms complemented with biological bio‑
markers, the Amyloid Tau Neurodegeneration (ATN) framework. Small non‑coding RNA (sncRNA) in the blood have 
emerged as potential predictors of AD. We identified sncRNA signatures specific to ATN and AD, and evaluated 
both their contribution to improving AD conversion prediction beyond ATN alone.

Methods This nested case–control study was conducted within the ACE cohort and included MCI patients matched 
by sex. Patients free of type 2 diabetes underwent cerebrospinal fluid (CSF) and plasma collection and were followed‑
up for a median of 2.45‑years. Plasma sncRNAs were profiled using small RNA‑sequencing. Conditional logistic 
and Cox regression analyses with elastic net penalties were performed to identify sncRNA signatures for A+(T|N)+ and 
AD. Weighted scores were computed using cross‑validation, and the association of these scores with AD risk 
was assessed using multivariable Cox regression models. Gene ontology (GO) and Kyoto encyclopaedia of genes 
and genomes (KEGG) enrichment analysis of the identified signatures were performed.

Results The study sample consisted of 192 patients, including 96 A+(T|N)+ and 96 A‑T‑N‑ patients. We constructed 
a classification model based on a 6‑miRNAs signature for ATN. The model could classify MCI patients into A‑T‑
N‑ and A+(T|N)+ groups with an area under the curve of 0.7335 (95% CI, 0.7327 to 0.7342). However, the addition 
of the model to conventional risk factors did not improve the prediction of AD beyond the conventional model 
plus ATN status (C‑statistic: 0.805 [95% CI, 0.758 to 0.852] compared to 0.829 [95% CI, 0.786, 0.872]). The AD‑related 
15‑sncRNAs signature exhibited better predictive performance than the conventional model plus ATN status (C‑sta‑
tistic: 0.849 [95% CI, 0.808 to 0.890]). When ATN was included in this model, the prediction further improved to 0.875 
(95% CI, 0.840 to 0.910). The miRNA‑target interaction network and functional analysis, including GO and KEGG path‑
way enrichment analysis, suggested that the miRNAs in both signatures are involved in neuronal pathways associated 
with AD.
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Conclusions The AD‑related sncRNA signature holds promise in predicting AD conversion, providing insights 
into early AD development and potential targets for prevention.

Keywords Alzheimer’s disease, Mild cognitive impairment, ATN, Biomarkers, Small non‑coding RNA, Gene regulatory 
networks, Nested case–control study

Background
Dementia is the 7th leading cause of death world-
wide, with Alzheimer’s disease (AD) accounting for the 
60–70% of cases [1]. Less severe forms of cognitive dys-
function, including mild cognitive impairment (MCI), 
usually precede the development of dementia. In fact, 
participants with MCI display three to five times higher 
risk for dementia progression, mostly Alzheimer, com-
pared to those with normal cognition [2]. Therefore, the 
identification of blood-based early detection biomarkers 
of MCI and risk of progression to AD is a challenge for 
more accurate and personalised medicine.

In 2011, the National Institute on Aging and Alzhei-
mer’s Association agreed on the ATN classification sys-
tem, based on biological markers of disease rather than 
on its clinical consequences, in an attempt to better 
address the complexity of the disease [3]. Several stud-
ies have demonstrated that memory declines faster in the 
A + T + N + and A+(T|N)+ groups compared with the 
other five ATN profiles [4]. Thus, the ATN system offers 
an opportunity to improve the prediction of short-term 
memory decline and AD progression. Added to the clini-
cal MCI diagnosis, the ATN framework has the advantage 
of discriminating between groups of participants, which 
represents a promising tool for future diagnosis and ther-
apeutic-targeted treatments. Despite the promise of the 
ATN classification system for improving the prediction 
of AD progression, its complexity and discomfort during 
the lumbar puncture induce limits to its widespread use 
in clinical settings [5]. Therefore, there is a critical need 
for the identification of less invasive blood-based bio-
markers to improve early detection and prediction of AD 
progression [6]. Plasma levels of Aβ proteins, p-tau217 or 
p-tau181 have been identified as significantly higher in 
participants with early or mild AD, demonstrating high 
accuracy in distinguishing AD from several other neuro-
degenerative diseases [7–10]. The performance of plasma 
P-tau alone accurately predicted AD dementia within 
4  years (AUC = 0.83), and this prediction was further 
improved when combined with APOE genotype and cog-
nitive tests (AUC = 0.91) [11]. Small RNAs, particularly 
microRNAs (miRNAs) and transfer RNA-derived small 
RNAs (tRNAs) have also attracted considerable atten-
tion as potential biomarkers and therapeutic targets [12, 
13]. Combining them with ATN biomarkers may offer an 
approach to improve the prediction of AD conversion. 

The utilization of circulating miRNAs as multimarker 
panels is becoming a less expensive and time-consum-
ing diagnosis tool and offers insights into the underly-
ing molecular mechanisms of diseases. Due to their role 
as genetic regulators, miRNAs are nowadays considered 
potential therapeutic tools for restoring cell functions 
disrupted during disease progression [14–16]. Previous 
studies have shown that specific sncRNAs have differ-
ential expression between AD patients and cognitively 
healthy participants [17–21], and some of them exhibit 
good predictive accuracy [22]. Furthermore, differential 
expression of sncRNAs has been observed between indi-
viduals with MCI and healthy participants [19, 23, 24]. 
However, few studies have investigated sncRNAs beyond 
miRNA in AD prediction, and none have compared the 
additive value of ATN-related and AD-related sncRNA 
signatures. The ATN-related sncRNA signature may 
reflect specific pathological processes that lead to AD, 
such as Aβ and P-tau accumulation. Conversely, the AD-
related sncRNA signature captures a broader spectrum 
of molecular changes associated with AD progression. 
Incorporating both signatures could help to identify indi-
viduals at different stages of AD development.

In this study, we aimed to investigate the utility of 
sncRNA signatures related to AD or ATN classification in 
improving the prediction of AD conversion compared to 
ATN alone. We identified an AD-related sncRNA signa-
ture capable of predicting AD conversion and compared 
its predictive performance with that of the ATN-related 
sncRNA signature.

Methods
Study design and population
This study has been conducted within the ACE cohort, 
which consists of MCI men and women aged > 48  years 
recruited and assessed between 2006 to 2022 at the 
Memory Disorders Unit (ACE Alzheimer Center, Spain). 
Patients were diagnosed with MCI at a case conference 
attended by neurologists, neuropsychologists, and social 
workers, and using the Spanish version of the Mini-
Mental State Examination (MMSE), the memory part 
of the Spanish version of the 7 Minute test, the Spanish 
version of the Neuropsychiatric Inventory Question-
naire (NPI-Q), the Hachinski Ischemia Scale, the Blessed 
Dementia Scale and the Clinical Dementia Rating (CDR) 
scale, as well as a comprehensive neuropsychological 
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battery of ACE (N-BACE) [25] Detailed characteristics 
of the study population can be found elsewhere [26]. 
From a total of 361 participants with MCI, free of type 
2 diabetes, who had ATN classification, available plasma 
samples and follow-up data, 211 individuals were clas-
sified as A+(T|N)+ . For this nested case–control study, 
we randomly selected 96 A+(T|N)+ and their paired 96 
A-T-N- participants matched by sex (Additional file  1: 
eFigure  1). Lumbar punctures were performed at ACE 
Alzheimer Center under fasting conditions. Aβ and tau 
proteins were quantified by either the commercially 
available enzyme-linked immunosorbent assays (ELISAs) 
(INNOTEST, Fujirebio Europe) or the chemilumines-
cence enzyme immunoassay (CLEIA) using the Lumi-
pulse G 600 II automatic platform (Fujirebio Europe). 
Cut-offs to dichotomize each CSF biomarker into ± were 
as follows: for ELISA, Aβ1-42 < 676  pg/mL for A, p181-
Tau > 58  pg/mL for T and T-Tau > 367  pg/mL for N; for 
CLEIA, Aβ1-42 < 796  pg/mL for A; p181-tau > 54  pg/
mL for T and T-tau > 412 pg/mL for N [27]. Glucose and 
insulin concentrations were measured in plasma samples 
(Institute of Health Carlos III, ACE Alzheimer Center 
collection C.0000299), using standard enzymatic auto-
mated methods. Ascertainment of AD was assigned by 
consensus at a case conference using the same proce-
dures and questionnaires as for MCI, plus the 2011 NIA-
AA for Alzheimer’s disease. During a median follow-up 
time of 2.45  years (IQR = 2.17), 74 incident AD events 
occurred. Information about demographic characteristics 
and lifestyle factors (i.e., age, sex, BMI, APOE ε4, educa-
tion, smoking habit, and medication) was collected. The 
clinical dataset was downloaded on 15 February 2023.

Data processing
We identified 1981 sncRNAs through small RNA 
sequencing (Additional file 1: eMethods). After applying 
data filtering and excluding those transcripts with less 
than 1000 total reads, a total of 208 sncRNAs remained 
available for further analysis. One patient was excluded 
from the control group due to a low number of reads in its 
sample, resulting in a total of 191 participants (Additional 
file 1: eFigure 1). Its paired case was also removed from 
the subsequent matched case–control analyses. Abnor-
mally sncRNA expression values beyond z-score ± 3 
were excluded from the analyses [28]. Missing data was 
imputed by applying the random forest approach using 
the missForest package (v1.5) [29]. Reads were normal-
ized for sequencing depth, gene length, and RNA com-
position using the DESeq2 package (v.1.38.2) [30] and 
z-score was calculated to generate comparable effect 
sizes between sncRNAs. Due to the number of sncRNAs, 
P values were adjusted for multiple testing using the false 

discovery rate approach (Benjamini–Hochberg method) 
[31]. Significance was set at Padj < 0.05.

Statistical analyses
Descriptive data is shown as median and interquar-
tile range for quantitative variables, and percentages 
for categorical variables. The distribution of variables 
was assessed using the Kolmogorov–Smirnov test. Dif-
ferences between matched case–control groups were 
assessed using Wilcoxon’s Signed Rank Test and McNe-
mar’s test for continuous and categorical variables, 
respectively. Group differences between independent 
variables were examined using the Mann–Whitney test 
and the chi-square test, respectively.

Univariate analyses
The differential expression and association of sncRNAs 
with ATN status and AD were examined in univariate 
analyses. The DESeq2 package was used to identify dif-
ferentially expressed sncRNAs between A+(T|N)+ versus 
A-T-N- and between AD-converters and non-converters. 
Unadjusted conditional logistic regression analysis was 
performed to examine the association between sncRNAs 
and A+(T|N)+ . Adjusted conditional logistic regres-
sion analysis was also performed to examine the inde-
pendent associations between sncRNAs and A+(T|N)+ . 
The model included several covariates such as age, BMI, 
APOE ε4, education, smoking habit, use of anxiolytic, 
antidepressants or antihypertensive drugs, use of statins 
or other lipid-lowering medication, and MMSE score. 
Odds ratios (ORs) and their 95% CIs were calculated 
considering A-T-N- as the reference category. Sensitiv-
ity analyses using unconditional logistic regressions were 
also performed to examine whether these associations 
were modified by the matching factor; sex. For these 
analyses, we used the aforementioned adjusted mod-
els additionally adjusted for sex. Cox regression analysis 
adjusting for the previous covariates plus ATN at base-
line was used to identify sncRNAs related to the risk of 
progression from MCI to AD. Hazard ratios (HRs) and 
their 95% CIs were estimated.

Multivariate analyses
Given the high dimensionality of the data and the mul-
ticollinearity among the sncRNA (Additional file 1: eFig-
ure 2), we also performed multivariate analyses. In order 
to identify sncRNA signatures for A+(T|N)+ and AD, we 
used a regularized regression approach using the “glm-
net” package (v4.1.6) [32]. The estimated required sample 
size to find associations between the ATN-related sig-
nature and A+(T|N)+ was 192 (OR 1.56, 80% statistical 
power, P value = 0.05). The estimated required number of 
AD events to find associations between the ATN-related 
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signature or the AD-related signature and AD was 73 (HR 
2.05, 80% statistical power, P value = 0.05). We employed 
elastic net regression modeling that has the ability to 
reduce complexity of high dimensional data and handle 
multicollinearity by performing variable selection and 
regularization simultaneously. The elastic net method 
combines the L1 and the L2 penalties of the Lasso and 
Ridge methods. This method finds the ridge regression 
coefficients and then conducts the second step by using 
a Lasso sort of shrinkage of the coefficients, which tends 
to choose one variable from highly correlated groups and 
ignore the rest [33]. To identify a sncRNA signature for 
ATN, we scaled the data and regressed ATN status on 
the 208 sncRNAs using a conditional logistic regression 
with elastic net penalty. To confirm our results, a sensi-
tivity analysis using a logistic regression with elastic net 
penalty was further performed for the 191 participants 
with available data. Thereafter, to identify a sncRNA sig-
nature for AD, we performed a Cox regression analysis 
with elastic net penalty. To reduce overfitting, the data 
was divided into training set (90%) and test set (10%). In 
the training set, we evaluated the alpha parameter from 
0.1 to 1 in ~ 0.05 increments (avoiding L2 norm), and the 
tuning parameter (lambda), using a tenfold cross-valida-
tion (CV) approach in a 20-iteration loop. The ATN sig-
nature and the AD signature had an alpha value of 0.90 
and 0.65, respectively, and a lambda value of 0.058724638 
and 0.030235403, respectively. The combination of alpha 
and lambda was chosen based on a high Area Under the 
ROC Curve (AUC) and C-statistic in the test set. We 
applied the selected alpha and lambda values to each 
elastic net regression for every training of a 100-itera-
tion loop. We built the ATN signature and AD signature 
only with those sncRNAs that were consistently selected 
in more than 90 iterations. For each sncRNA selected 
from the model, we calculated the mean coefficient and 
the 95% CI. The AUC and the C-statistic were calculated 
in a 1000-iteration loop to evaluate the performance of 
the sncRNA profile in assessing ATN and AD incidence, 
respectively.

Finally, the coefficients obtained from 90 or more 
iterations in the elastic net were applied to the selected 
sncRNAs as weights (positive or negative) to estimate 
the signatures of ATN and AD as the weighted sum. 
Before Cox regression analyses, the identified signa-
tures (sncRNA score) were transformed by z-score 
(mean = 0; SD = 1). For our analyses of AD incidence, 
the time-to-event variable was the interval between the 
date of enrolment and the date of the AD event. We 
examined associations of ATN status and the two signa-
tures with AD risk fitting two adjusted Cox regression 
models (adjusted for age, sex, BMI, APOE ε4, smoking 
habit, education, use of anxiolytic or antidepressants, 

antihypertensive drugs, statins, and other lipid-lowering 
medication, and baseline MMSE) to estimate HRs and 
95% CIs. To assess the added predictive ability of the 
derived signatures, we compared through likelihood ratio 
tests the C-statistics between the first model including 
the conventional AD risk factors plus ATN and the other 
models including each signature in addition to these risk 
factors. All analyses were conducted using R software (v. 
4.2.1) (R Foundation for Statistical Computing, Vienna, 
Austria).

Functional enrichment analysis
The minimum network with the strongest evidenced tar-
get genes of sncRNAs linked to AD signatures was identi-
fied through the validated miRTarBase [34] and TarBase 
[35] databases, incorporated in the miRNet platform 
[36]. The protein–protein (PPI) network was added to 
the genes network. To further clarify the potential func-
tion annotation and pathway enrichment associated 
with both signatures’ miRNAs, Gene Ontology (GO) 
analyses, including biological process (BP), molecular 
function (MF), and cellular component (CC), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
ways, were performed to figure out the functional roles 
of these miRNAs in WebGestalt platform [37] (signifi-
cant as FDR < 0.05). To obtain more robust results, genes 
in the validated miRTarBase database, plus genes that 
overlapped in the predicted miRDB and TargetScan data-
bases were used. Only miRNA functional enrichment 
analysis was performed due to the lack of robust gene 
databases for non-miRNA sncRNAs. A literature search 
was carried out using the MEDLINE-PubMed database 
to extract gene functions related to MCI or AD using an 
algorithm described in Additional file  1: eFigure  3. The 
search strategy combined the miRNA’s and/or the gene’s 
name with terms related to Alzheimer’s disease, cogni-
tion and brain.

Results
Baseline characteristics of the study participants
Descriptive characteristics are shown in Table  1. 
A+(T|N)+ participants were more likely to be older, to 
have a lower BMI, to be carriers of APOE ε4, were tak-
ing less antidepressant and anxiolytic medication, and 
had lower baseline scores of MMSE compared to A-T-N- 
participants. Also, A+(T|N)+ participants had a shorter 
median follow-up period (1.7 vs. 3.1 years) and a higher 
conversion to AD (71.6% vs. 5.3%). In Table  2 we show 
the baseline characteristics of AD converters compared 
to non-converters. A total of 74 MCI participants were 
converted to AD during the follow-up period. Addi-
tional file 1: eTable 1 show the baseline characteristics of 
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participants in the A+(T|N)+ subgroups, consisting of 65 
A+T+N+ and 31 A+T+N- or A+T-N+ participants.

Associations of sncRNAs with ATN status
Univariate analyses
The DESeq2 method was applied to select the most 
relevant differentially expressed sncRNAs between 
A+(T|N)+ and A-T-N- groups (Additional file  1: eTa-
ble  2). Thirteen sncRNAs (ten upregulated and three 
downregulated) with unadjusted P values (P value < 0.05) 
were selected (Additional file  1: eFigure  4a). However, 
we did not observe any sncRNAs that were differentially 
expressed when using adjusted P value, as shown in the 
volcano plot in Additional file 1: eFigure 4b.

Univariate conditional logistic regression analyses 
were conducted to explore associations between sncR-
NAs and A+(T|N)+ (Additional file 1: eTable S3). Four 
sncRNAs (hsa-miR-27b-5p, hsa-miR-339-5p, hsa-miR-
548ag, U4) were positively and two (piR-31924, LSU-
rRNA-Hsa) negatively associated with A+(T|N)+ . 
Nonetheless, after multiple testing correction, none of 
the sncRNAs remained significant. Analyses adjusting 

for the matching factor also yielded similar results 
(Additional file 1: eTable 4).

Multivariate analyses
Figure  1 presents the six sncRNAs selected 90–100 
times in the elastic net regression analysis for 
A+(T|N)+ . All of them were miRNAs, namely hsa-
miR-548  k, hsa-miR-339-5p, hsa-miR-221-5p and 
hsa-miR-144-5p with positive coefficients, while hsa-
miR-382-5p and hsa-miR-146b-5p had negative coef-
ficients. The AUC of the miRNAs signature for ATN 
was 0.7335 (95% CI, 0.7327 to 0.7342). In the sensitivity 
analysis conducted using logistic regression, only four 
miRNAs (hsa-miR-548  k, hsa-miR-339-5p, hsa-miR-
382-5p, hsa-miR-146b-5p) were identified (Additional 
file  1: eTable  5). These four miRNAs exhibited con-
sistent associations in the same direction as observed 
in the main analysis. However, the other two miRNAs 
identified in the conditional logistic regression analysis 
(hsa-miR-221-5p, hsa-miR-144-5p) were not found to 
be associated with A+(T|N)+ in the sensitivity analysis.

Table 1 Characteristics of the study participants according to the ATN status

MMSE mini‑mental state examination, AD Alzheimer’s disease

Continuous data are presented as median (interquartile range), and categorical variables are presented as number (%). The Wilcoxon Signed‑Rank test was used 
for comparison of non‑normally distributed continuous variables, and the McNemar’s test was used for comparison of categorical variables. *P value < 0.05, **P 
value < 0.01, ***P value < 0.001

Variable A-T-N-
participants

A+(T|N)+ 
participants

P value

n 95 95

Age (years) 69.2 (61.7, 76.2) 76.6 (72.4, 80.1)  < 0.001***

Women [N (%)] 46 (48.0) 46 (48.0) 1.000

Body mass index (kg/m2) 27.2 (24.6, 29.2) 25.5 (23.5, 28.5) 0.036*

APOE ε4 carriers [N (%)] 13 (13.7) 58 (61.1)  < 0.001***

Education (years) 8 (6, 11) 8 (6, 11) 0.642

Smoking [N (%)]

 Never 65 (68.4) 67 (70.5) 0.880

 Former 18 (18.9) 22 (23.2) 0.584

 Current 12 (12.6) 6 (6.3) 0.239

Medication [N (%)]

 Antidepressant and anxiolytic 56 (58.9) 32 (33.7)  < 0.001***

 Antihypertensive 33 (34.7) 39 (41.1) 0.480

 Statins 24 (25.3) 28 (29.5) 0.617

 Other lipid‑lowering drugs 6 (6.3) 7 (7.4) 1.000

MMSE at baseline (score) 27 (26, 29) 25 (24, 27)  < 0.001***

A [N (%)] 1 (1.1) 95 (100.0)  < 0.001***

T [N (%)] 0 (0.0) 92 (96.8)  < 0.001***

N [N (%)] 0 (0.0) 67 (70.5)  < 0.001***

Follow‑up (years) 3.1 (2.2, 4.0) 1.7 (1.0, 2.8)  < 0.001***

Conversion to AD [N (%)] 5 (5.3) 68 (71.6)  < 0.001***



Page 6 of 15Gutierrez‑Tordera et al. Cell & Bioscience            (2024) 14:8 

Associations of sncRNAs with AD incidence
Univariate analyses
We investigated whether sncRNAs could distinguish 
between participants with MCI who converted to AD 
and those who did not. The comparison of sncRNA 
expression levels between 74 AD-converters and 117 
non-converters revealed 27 sncRNAs transcripts 
that were differentially expressed with unadjusted P 
value < 0.05 (Additional file  1: eTable  6 and Additional 
file  1: eFigure  5a). However, after controlling for FDR, 
only two sncRNAs (hsa-miR-151a-5p, hsa-miR-548  k) 
remained differentially expressed. The upregulated sncR-
NAs are displayed in the volcano plot (Additional file 1: 
eFigure 5b).

Among the 11 sncRNAs that exhibited a significant 
association with AD incidence, only one miRNA (hsa-
miR-584-5p) remained significant after adjusting for FDR 
in the adjusted Cox regression analyses (Additional file 1: 
eTable 7).

Multivariate analyses
Figure  2 shows the 15 sncRNAs selected in the 10-CV 
elastic net regression for AD incidence (C-statis-
tic = 0.7948, 95% CI, 0.7942 to 0.7953). Out of the 100 
iterations conducted, we observed that none of these 208 

sncRNAs were selected fewer than 100 times. Nine of the 
selected sncRNAs associated with AD risk were miRNAs. 
Positive associations were observed for four miRNAs 
(hsa-miR-221-5p, hsa-miR-548d-5p, hsa-miR-548 k, hsa-
miR-877-5p), two piRNAs (piR-33043, piR-33151) and 
two tRNAs (tRNA-Asp-GTC-3-1, tRNA-Pro-TGG-1-1). 
Five miRNAs (hsa-miR-224-5p, hsa-miR-382-5p, 
hsa-miR-454-5p, hsa-miR-625-5p, hsa-miR-769-5p), 
one snoRNA (mgU6-77) and one tRNA (tRNA-Arg-
CCT-4-1) were negatively associated with AD.

Associations of the ATN- and AD-related sncRNA signatures 
with AD incidence
In the adjusted analyses, we observed a significant asso-
ciation of model 2 (including conventional risk factors 
and ATN) with AD (Tables  3 and 4). The association 
between the ATN-related sncRNA signature, including 
risk factors, and AD was significant, however, this asso-
ciation became insignificant after further adjustment 
for ATN status (Table  3). In contrast, the association 
between the AD-related sncRNA signature, including 
risk factors, and AD remained significant even after addi-
tional adjustment for ATN (Table 4). Including the ATN-
related sncRNA signature into the conventional model 
significantly improved the C-statistic for AD (from 0.791 

Table 2 Characteristics of the study participants according to conversion from MCI to AD

AD Alzheimer’s disease, MCI mild cognitive impairment, MMSE mini‑mental state examination

Continuous data are presented as median (interquartile range), and categorical variables are presented as number (%). The Mann–Whitney test was used for 
comparison of non‑normally distributed continuous variables, and the  X2 test was used for comparison of categorical variables. *P value < 0.05, **P value < 0.01, ***P 
value < 0.001

Variable AD non-converters AD converters P value

n 117 74

Age (years) 69.8 (62.4, 76.4) 77.7 (72.8, 80.6)  < 0.001***

Women [N (%)] 59 (50.4) 34 (45.9) 0.546

Body mass index (kg/m2) 27.0 (24.0, 28.8) 25.5 (23.5, 28.7) 0.140

APOE ε4 carriers [N (%)] 26 (22.0) 46 (62.2)  < 0.001***

Education (years) 8 (6, 12) 8 (6, 10) 0.143

Smoking [N (%)]

 Never 85 (72.6) 48 (64.9) 0.254

 Former 19 (16.2) 21 (28.4) 0.045*

 Current 13 (11.1) 5 (6.8) 0.316

Medication [N (%)]

 Antidepressant and anxiolytic 61 (52.1) 27 (36.5) 0.035*

 Antihypertensive 37 (31.6) 35 (47.3) 0.029*

 Statins 28 (23.9) 24 (32.4) 0.199

 Other lipid‑lowering drugs 8 (6.8) 5 (6.8) 0.983

MMSE at baseline (score) 27 (25, 28) 25 (23, 27)  < 0.001***

A [N (%)] 28 (23.7) 69 (93.2)  < 0.001***

T [N (%)] 27 (22.9) 66 (89.2)  < 0.001***

N [N (%)] 18 (15.3) 50 (67.6)  < 0.001***

Follow‑up (years) 3.1 (2.2, 3.8) 1.3 (1.0, 2.5)  < 0.001***
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to 0.805, P value = 0.004). On the other hand, adding the 
ATN-related sncRNA signature to model 2 did not sig-
nificantly change the prediction precision for AD (from 
0.829 to 0.832, P value = 0.292 for the difference between 
the two C-statistics) (Table  3). The addition of the AD-
related sncRNA signature to the conventional model 
increased the C-statistic for AD from 0.791 to 0.849 
(P value < 0.001). Furthermore, when the AD-related 
sncRNA signature was added to the conventional model 
plus ATN, the C-statistic further increased from 0.829 to 
0.875 (P value < 0.001) (Table 4).

Functional enrichment analysis
Gene-miRNA interactions, GO functional and KEGG 
enrichment analyses were performed on ATN-related 
and AD-related signatures to estimate their molecular 
function. The gene-miRNA interaction revealed 15 hub 
genes for the ATN-related sncRNA signature (Fig.  3a) 
and 25 for the AD-related sncRNA signature (Fig. 3c). All 
of them were related to neuronal functions (Additional 
file 1: eTables 8, 9). Their biological processes and path-
ways were involved in Hippo and MAPK signalling path-
ways, neurogenesis and ubiquitin-mediated proteolysis in 

sncRNA #a β (95% CI) sncRNA #a β (95% CI)

hsa-miR-548k 100 0.161 (0.149, 0.172) hsa-miR-382-5p 100 -0.184 (-0.194, -0.174)

hsa-miR-339-5p 100 0.150 (0.140, 0.160) hsa-miR-146b-5p 98 -0.120 (-0.129, -0.111)

hsa-miR-221-5p 96 0.091 (0.080, 0.102)

hsa-miR-144-5p 90 0.078 (0.069, 0.088)

hsa−miR−146b−5p

hsa−miR−382−5p

−0.20 −0.15 −0.10 −0.05

sn
cR

N
A

hsa−miR−144−5p

hsa−miR−221−5p

hsa−miR−339−5p

hsa−miR−548k

0.05 0.10 0.15 0.20

sncR
N
A

Coefficient value (95% CI)

Fig. 1 SncRNAs ranked from highest to lowest elastic net regression coefficients for A+(T|N)+ . #a, Occurrence of miRNAs (out of 100) in the elastic 
net conditional logistic regression, sncRNA small non‑coding RNA, hsa Homo sapiens, CI confidence interval
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sncRNA β (95% CI) sncRNA β (95% CI)

piR-33043 0.486 (0.467, 0.504) hsa-miR-454-5p -0.443 (-0.460, -0.426)

hsa-miR-548k 0.413 (0.395, 0.430) tRNA-Arg-CCT-4-1 -0.354 (-0.373, -0.335)

tRNA-Asp-GTC-3-1 0.323 (0.304, 0.341) mgU6-77 -0.313 (-0.330, -0.296)

tRNA-Pro-TGG-1-1 0.316 (0.297, 0.336) hsa-miR-382-5p -0.309 (-0.322, -0.296)

hsa-miR-877-5p 0.299 (0.282, 0.316) hsa-miR-224-5p -0.298 (-0.312, -0.284)

hsa-miR-221-5p 0.283 (0.269, 0.297) hsa-miR-769-5p -0.279 (-0.297, -0.260)

piR-33151 0.260 (0.243, 0.277) hsa-miR-625-5p -0.262 (-0.277, -0.247)

hsa-miR-548d-5p 0.241 (0.223, 0.260)

hsa−miR−625−5p

hsa−miR−769−5p

hsa−miR−224−5p

hsa−miR−382−5p

mgU6−77

tRNA−Arg−CCT−4−1

hsa−miR−454−5p

−0.5 −0.4 −0.3 −0.2 −0.1

sn
cR

N
A

hsa−miR−548d−5p

piR−33151

hsa−miR−221−5p

hsa−miR−877−5p

tRNA−Pro−TGG−1−1

tRNA−Asp−GTC−3−1

hsa−miR−548k

piR−33043

0.1 0.2 0.3 0.4 0.5

sncR
N
A

Coefficient value (95% CI)

Fig. 2 SncRNAs ranked from highest to lowest elastic net regression coefficients for risk of AD. sncRNA small non‑coding RNA, piR piwi RNA, tRNA 
transfer RNA, hsa Homo sapiens, CI confidence interval

Table 3 Associations and performance of the ATN‑related sncRNA signature with AD incidence

Model 1 included age, sex, BMI, APOE ε4, smoking status, education, use of anxiolytic or antidepressants, antihypertensive drugs, statins, and other lipid‑lowering 
medication and MMSE score; Model 2 included ATN status plus the conventional risk factors included in Model 1; Model 3 included the ATN‑related sncRNA signature 
plus the conventional risk factors included in Model 2; Model 4 included the ATN‑related sncRNA signature plus the conventional risk factors included in Model 2 and 
ATN status. Exposure contrast is per z‑score increase in the sncRNA signature. *P value < 0.05, **P value < 0.01, ***P value < 0.001

AD Alzheimer’s disease, HR hazard ratio, BMI Body mass index, MMSE mini‑mental state examination
a P value for the hazard ratio
b P value for the likelihood‑ratio test

Analysis model HR (95% CI) P  valuea C-statistic P  valueb

Model 1 Model 2 Model 3

Model 1 0.791 (0.740, 0.842)

Model 2 3.896 (2.326, 6.524)  < 0.001*** 0.829 (0.786, 0.872)  < 0.001***

Model 3 1.497 (1.141, 1.963) 0.004** 0.805 (0.758, 0.852) 0.003**

Model 4 1.170 (0.874, 1.567) 0.292 0.832 (0.789, 0.875)  < 0.001*** 0.291  < 0.001***
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both signatures, and to other pathways such as the neu-
rotrophin signalling pathway in the ATN-related sncRNA 
signature (Fig. 3b and Additional file 1: eTable 10) and the 
mRNA surveillance pathway in the AD-related sncRNA 
signature (Fig. 3d and Additional file 1: eTable 11). Some 
of the molecular functions also involved tissue develop-
ment (Additional file 1: eTable 12) and the cellular com-
ponent part of a neuron (Additional file  1: eTable  13). 
These results suggest alterations in the expression of 
genes related to key metabolic and physiologic processes 
in neurons of MCI participants with progression to 
AD, that in turn seems to be regulated by ATN-related 
sncRNA signature integrated by 6 miRNAs.

Discussion
The study identified a new signature of 6 miRNAs associ-
ated with A+(T|N)+ and with a predictive performance 
comparable to the ATN classification. Furthermore, the 
study discovered another signature consisting of 15 sncR-
NAs that was found to be associated with AD. When 
this AD-related signature was incorporated into a con-
ventional risk prediction model, with or without ATN 
biomarkers, it resulted in significant improvements in 
predicting AD risk. These findings suggest that the AD-
related signature may serve as a valuable and novel candi-
date marker for AD.

Biomarkers play an important role in AD diagnosis 
and prognosis. Because of its minimal invasiveness and 
relatively low cost, the use of peripheral blood for AD 
diagnosis has gained attention [38, 39]. While CSF bio-
markers have been studied in relation to AD diagnosis 
and staging [40], no study has analysed plasma sncRNAs 
in relation to A+(T|N)+ and AD incidence. We propose 
a 6-sncRNA signature as an alternative to CSF biomarker 
analysis for discriminating A+(T|N)+ participants. The 
AUC analysis suggests that this signature could iden-
tify participants with worse AD prognoses using less 

invasive procedures. Compared to a conventional model 
with ATN classification, the addition of the ATN-related 
sncRNA signature showed slightly lower performance. 
On the other hand, the associations of the ATN-related 
sncRNA signature with AD were attenuated and became 
non-significant after adjusting for ATN, suggesting that 
the miRNAs in this signature do not biologically underlie 
this association.

Previous studies have reported decreased hsa-miR-
339-5p in the brain tissue of AD patients and AD mice 
models [41]. This miRNA is known to down-regulate 
BACE1 expression in human brain cells [41]. In our 
study, hsa-miR-339-5p was positively associated with 
A+(T|N)+ signature and MCI to AD conversion. Fur-
thermore, Spearman’s correlation analysis revealed a sig-
nificant negative correlation between hsa-miR-339-5p 
and Aβ42 (r = −  0.192, P value = 0.008). These findings 
suggest that increased hsa-miR-339-5p expression could 
be interpreted as a mechanism to counteract Aβ forma-
tion, before clinical symptoms develop.

On the contrary, ADAM10 plays a role in the non-
amyloidogenic pathway by cleaving the Aβ protein 
precursor. A study demonstrated that hsa-miR-221 
overexpression in SH-SY5Y cells reduced ADAM10 
levels [42]. Interestingly, we observed an upregula-
tion of hsa-miR-221-5p in both the A+(T|N)+ signa-
ture and the conversion from MCI to AD, potentially 
serving as a mechanism to decrease ADAM10 and 
favour AD pathology. Similarly, miR-144 upregulation 
in  vitro reduced ADAM10 [43] and hsa-miR-144-3p 
was increased in the hippocampi and prefrontal cor-
tex of APP/PS1 mice, leading to cholinergic neuron 
degeneration, one of the key hallmarks of AD [44]. 
Hsa-miR-144-5p has been found either upregulated or 
downregulated in AD patients depending on the ana-
lytical method used [45]. Considering our finding of 
hsa-miR-144-5p targeting CUL3, its downregulation 

Table 4 Associations and performance of the AD‑related sncRNA signature with AD incidence

Model 1 included age, sex, BMI, APOE ε4, smoking status, education, use of anxiolytic or antidepressants, antihypertensive drugs, statins, and other lipid‑lowering 
medication and MMSE score; Model 2 included ATN status plus the conventional risk factors included in Model 1; Model 3 included the AD‑related sncRNA signature 
plus the conventional risk factors included in Model 2; Model 4 included the AD‑related sncRNA signature plus the conventional risk factors included in Model 2 and 
ATN status. Exposure contrast is per z‑score increase in the sncRNA signature. *P value < 0.05, **P value < 0.01, ***P value < 0.001

AD Alzheimer’s disease, HR hazard ratio, BMI Body mass index, MMSE mini‑mental state examination.
a P value for the hazard rati
b P value for the likelihood‑ratio test

Analysis model HR (95% CI) P  valuea C-statistic P  valueb

Model 1 Model 2 Model 3

Model 1 0.791 (0.740, 0.842)

Model 2 3.896 (2.326, 6.524)  < 0.001*** 0.829 (0.786, 0.872)  < 0.001***

Model 3 3.043 (2.185, 4.239)  < 0.001*** 0.849 (0.808, 0.890)  < 0.001***

Model 4 2.853 (2.020, 4.029)  < 0.001*** 0.875 (0.840, 0.910)  < 0.001***  < 0.001***  < 0.001***
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leads to increased NFR2 activity [46] a potential novel 
target for AD treatment due to its antioxidant capacity 
and role in memory and synaptic plasticity protection 
[47]. Therefore, we propose that the positive associa-
tion between the A+(T|N)+ signature and AD progres-
sion would involve the modulation of CUL3 and NFR2.

This study is the first to reveal an increased expression 
of hsa-miR-548 k associated with cognitive impairment.

Hsa-miR-548  k targets genes that are involved in Aβ 
uptake and clearance by microglia, such as IDOL [48, 
49], or regulation of inflammatory processes, such as 
ADAMTS1 [50, 51], both linked to neurodegenerative 
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Fig. 3 Network construction and functional enrichment analysis of target genes. A The network diagram of the ATN‑related signature of AD 
(orange for miRNAs signature, blue for target genes). B The significant KEGG pathways and GO functions of target genes for the ATN‑related 
signature of AD (FDR, Padj < 0.05). C The network diagram of the AD‑related signature (orange for miRNAs signature, blue for target genes). D The 
significant KEGG pathways and GO functions of target genes for the AD‑related signature (FDR, Padj < 0.05). Counts represent the number of genes 
that overlap with the gene set. 1Signaling pathways regulating pluripotency of stem cells; 2Positive regulation of nucleobase‑containing compound 
metabolic process; 3Protein modification by small protein conjugation or removal; AD Alzheimer’s disease, KEGG Kyoto encyclopaedia of genes 
and genomes, GO Gene ontology
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diseases. Therefore, we could speculate that a poten-
tial upregulation of this miRNA might play a role in the 
development of AD. The potential implications of hsa-
miR-548 k expression in the mechanisms underlying AD 
development deserve further investigation.

In a case–control study, hsa-miR-382 was positively 
associated with MCI and effectively discriminated par-
ticipants with MCI from cognitively healthy participants 
(AUC = 0.92) [23]. In our study, hsa-miR-382-5p expres-
sion levels were inversely associated with A+(T|N)+ and 
AD risk. This finding is noteworthy considering that hsa-
miR-382-5p targets the EEF1A1 gene, which plays a role 
in long-term synaptic plasticity and memory consoli-
dation. Hence, the downregulation of hsa-miR-382-5p 
could be a counteracting mechanism aimed at protecting 
neurons and maintaining synaptic plasticity to preserve 
cognitive function [52].

Higher circulating levels of hsa-miR-146a has been 
consistently reported in MCI participants compared to 
those with AD [53–55]. In a mouse model of AD, the 
overexpression of hsa-miR-146a alleviated Aβ deposi-
tion and rescued cognitive impairment [56, 57]. In our 
study we found that hsa-miR-146b-5p was negatively 
associated with A+(T|N)+ signature, suggesting that 
the expression of this miRNA might decrease before a 
diagnosis of AD. In addition, the overexpression of hsa-
miR-146b-5p could be a potential strategy to alleviate the 
pathological changes associated with AD.

Previous studies have demonstrated a relationship 
between the ratio of plasma levels of Aβ42/40 and cer-
ebral amyloidosis [58], with an AUC of 0.86 [59]. Nota-
bly, in our study the addition of the AD-related sncRNA 
signature to ATN biomarkers modestly improved the risk 
prediction (C-statistic = 0.875), suggesting that sncRNAs 
have the potential to assist in the identification of indi-
viduals at high risk of AD.

Our results also suggest that the AD-related sncRNA 
signature captures a broader spectrum of molecu-
lar changes associated with AD progression, beyond 
the accumulation of Aβ and P-tau. The miRNAs (hsa-
miR-548 k, hsa-miR-221-5p and hsa-miR-382-5p) found 
to overlap between the ATN-related and the AD-related 
sncRNA signatures may reflect early changes in AD 
pathology related to Aβ and P-tau. In contrast, the pres-
ence of other sncRNAs within the AD-related signature 
suggests that they may capture additional biological 
events that occur later during AD development.

In addition to the overlapping miRNAs, our study also 
identified several other miRNAs that showed significant 
associations with AD. Specifically, we observed decreased 
expression of hsa-miR-224-5p, hsa-miR-625-5p, hsa-miR-
769-5p and hsa-miR-454-5p, while increased expression 
of hsa-miR-548d-5p and hsa-miR-877-5p. Of particular 

interest, hsa-miR-224-5p showed the highest number 
of interactions with target genes. Previous research has 
shown decreased expression of hsa-miR-224-5p in Aβ1-

42 microvascular endothelial cells of the blood–brain 
barrier (BBB), and its upregulation after the memantine 
treatment, contributing to the amelioration of the BBB 
permeability in the AD microenvironment [60]. Thus, the 
decreased expression of hsa-miR-224-5p observed in our 
study may indicate BBB damage. In line with our results, 
hsa-miR-877-5p was reported to be upregulated in the 
synaptosomes of AD post-mortem mice brains [61].

In human post-mortem brains of patients with MCI 
and AD, hsa-miR-454-3p was found to be upregulated 
[62]. In our study, hsa-miR-454-5p was inversely asso-
ciated with the risk of AD conversion, suggesting that 
during the early stages of AD, hsa-miR-454-5p may coun-
teract AD physiopathology. In addition, Hsa-miR-454-5p 
hsa-miR-769-5p, and hsa-miR-382-5p, which were also 
inversely associated with risk of AD conversion, target 
MAPK1. The MAPK1 signaling pathway has been impli-
cated in the development of AD [63].

To our knowledge, this is the first time that hsa-
miR-548  k, hsa-miR-548d-5p, hsa-miR-625-5p and hsa-
miR-769-5p are associated with AD. Hsa-miR-548d-5p 
downregulates PPARγ in hBMSCs cells [64] and PPARγ 
agonist treatment reduced amyloid plaque burden, 
inflammation, and improved cognition in animal mod-
els of AD [65]. The upregulation of hsa-miR-548d-5p we 
found, suggest this miRNA downregulates PPARγ and 
leads to AD pathophysiology.

The upregulation of hsa-miR-625-5p and hsa-miR-
769-5p have been related with apoptosis in several types 
of cancer. Whether they could play a similar role in AD 
deserves further investigation.

In addition to miRNAs, our AD-related signature 
included other sncRNAs such as piRNAs, tRNAs, and 
snoRNAs, which have been less studied in AD. In fast-
progressing amyotrophic lateral sclerosis (ALS) piR-
33151 was upregulated compared to slow-progressing 
ALS [66]. Similarly, we found a positive association of 
both piR-33151and piR-33043 with AD, suggesting that 
these piRNAs may increase their expression in neuro-
degenerative disorders due to stress responses. Further-
more, tRNAs are abundant in neural tissue, although 
they are largely understudied in the context of neurologi-
cal diseases [67]. Similarly, although mgU6-77 has not 
been described in relation to AD, it might be involved in 
methylation processes occurring in this disease [68].

Our study has several strengths such as the prospec-
tive design and the use of regularized regression meth-
ods to select biologically relevant sncRNAs. Also, the 
untargeted approach employed in our study ensures 
comprehensive coverage of the whole blood sncRNA 
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transcriptome, facilitating the discovery of novel sncR-
NAs associated with AD. The study has also some 
limitations. First, due to the cross-sectional analysis of 
the relationships between sncRNAs and ATN, causal-
ity cannot be inferred. Second, the A+(T|N)+ profiles 
may not encompass all individuals at AD risk, suggest-
ing that other types of pathology might be involved 
in the development of the disease. Third, considering 
that 15% of MCI participants develop AD after 2 years 
[69] and about 33% within 5 years [70], incorporating a 
longer follow-up period would strengthen the predic-
tive value of the sncRNA signatures. Also, performing 
RNA-Seq analysis of the gene transcriptome would 
provide additional robustness to our results and bet-
ter capture the potential interactions between the 15 
identified miRNAs signature in the upstream regulator 
of gene expression. Finally, more confirmatory work is 
needed before the sncRNA signatures can be applied 
to the community population. The identified signatures 
should be validated in independent larger populations 
and using qPCR. The sncRNAs’ targets should also be 
validated in  vivo and in  vitro using AD models. These 
approaches would help strengthen our findings.

Conclusions
In summary, our study provides compelling evidence 
for the incremental predictive value of sncRNA pro-
filing in AD risk prediction. While the ATN-related 
signature was based on the classical hallmarks of AD 
(amyloid, tau, and neurodegeneration), it omitted other 
possible mechanisms leading to AD. Thus, the AD-
related signature captured a more extensive spectrum 
of molecular changes, and not only those related to the 
accumulation of Aβ or hyperphosphorylated tau. The 
inclusion of 15 sncRNAs in a prediction model that 
comprises conventional risk factors and ATN biomark-
ers led to a notable improvement in AD risk prediction.

Furthermore, the identification of the AD-related 
sncRNA signature offers an opportunity to deepen our 
understanding of the molecular mechanisms underly-
ing AD development and paves the way for the discov-
ery of non-invasive blood-based biomarkers that could 
significantly enhance prevention and treatment efforts.
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