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Abstract 

Background Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms 
underlying HF are still not fully clear.

Results In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients 
and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur dur-
ing HF. We found substantial differences in protein expression changes between the atria and ventricles of myocar-
dial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, 
and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF 
samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase 
M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved 
the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. 
Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production 
in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues.

Conclusions Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the func-
tional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.
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Introduction
Heart failure (HF) is a leading cause of death worldwide, 
and it is one of the fastest growing health concerns, with 
a global prevalence of ~ 40 million individuals [1]. How-
ever, HF is a complex clinical syndrome with different 
clinical phenotypes, and it is characterized by a diverse 
spectrum of structural abnormalities of the left ventri-
cle (LV) [2]. Pathological cardiac hypertrophy is gener-
ally considered a critical risk factor for HF [3]. To date, 
even though numerous advances have been made in HF 
therapy, there is still a lack of effective drugs [4]. There-
fore, elucidating the molecular events that lead to HF is 
urgently needed in order to identify specific targets for 
novel drug research and development.

From an anatomical view, heart tissue includes four 
cavities, four valves, large arteries, and veins, and heart 
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tissue is primarily composed of cardiac fibroblasts (CFs), 
cardiomyocytes, smooth muscle cells (SMCs), and 
endothelial cells (ECs) [5, 6]. During the progression of 
HF, the expression profiles of genes and proteins in dif-
ferent cardiac regions change in different ways [7–9]. 
Previously, Lau et al. used an integrated omics approach 
to map the landscape of proteomic remodeling in a path-
ological model of cardiac hypertrophy in inbred mice 
from six divers, and they identified 273 candidate disease 
signatures in 36 nonredundant cardiac pathways that 
were reproducibly altered, providing important insights 
into disease pathogenesis in  vivo [10]. Recently, Doll 
et  al. established a region- and cell type-resolved quan-
titative proteomic map of the normal human heart, and 
they identified proteomic differences in different heart 
regions, suggesting functional differences, and identify-
ing potential cell type markers [11]. However, to date, a 
detailed global protein expression “footprint” in different 
regions of human HF tissues does not exist.

In this study, we performed proteomics and transcrip-
tomics analyses on samples from human HF patients and 
healthy donors to provide an overview of the detailed 
changes in proteins and mRNAs expression that occur in 
HF. We found that there were substantial differences in 
the protein expression changes in the atria and ventricles 
of the myocardium from patients with HF. The metabolic 
state in ventricular tissues from HF patients was altered, 
and inflammatory pathways were activated in atrial tis-
sues. Interestingly, glutathione S-transferase M2-2 
(GSTM2) was significantly decreased in human and 
mouse HF tissues. Overexpression of GSTM2 attenu-
ated DNA damage and extrachromosomal circular DNA 
(eccDNA) production in cardiomyocytes, thereby allevi-
ating interferon-I-stimulated macrophage activation and 
inflammation in heart tissues. Our study highlights the 
functional importance of GSTM2 in HF progression and 
provides a novel therapeutic target for HF.

Methods and materials
Heart samples
Forty HF tissue samples from eight HF patients and three 
healthy heart tissue samples from three donors were 
collected and used in this study. All HF patients were 
diagnosed with dilated cardiomyopathy with EF < 25% 
(systolic HF), and the clinical details of the HF patients 
are shown in Additional file 1: Table S1. All HF patients 
were diagnosed with HF (Function Capacity IV, Objec-
tive Assessment D, based on New York Heart Association 
functional classification) at least 3  months before heart 
transplantation. Written informed consent was obtained 
from the patients. Samples were collected in accordance 
with the human research protocol that was approved by 
the Research Ethics Committee of the First Affiliated 

Hospital, College of Medicine, Zhejiang University. The 
forty-three heart tissue samples were collected from the 
following regions: eight left atrium (LA) samples from 
HF patients, eight LV samples from HF patients, eight 
right atrium (RA) samples from HF patients, eight right 
ventricle (RV) samples from HF patients, eight Inter-
ventricular septum (IVS) samples from HF patients, and 
three control left atrium (CLA/C_LA) samples from 
healthy donors. These samples were explanted by an 
official medicolegal expert. The samples were stored at 
− 80 °C after collection.

Proteomics analysis
Forty-three heart samples were used to perform label-
free quantitative proteomics at Novogene Co., Ltd. (Bei-
jing, China), as previously described [12–14]. Briefly, the 
samples were washed three times with cold PBS, homog-
enized in liquid nitrogen, and sonicated three times on 
ice. Then, the supernatants were collected after centrifu-
gation, reduced by incubation with 5  mM dithiothrei-
tol for 30 min at 56 °C and alkylated by incubation with 
11  mM iodoacetamide for 15  min at room temperature 
in the dark. Afterword, the samples were diluted by add-
ing 100 mM triethylammonium bicarbonate to urea at a 
concentration of less than 2  M, digested by incubation 
with the mixture at a 1:50 trypsin-to-protein mass ratio 
overnight, and then digested by incubation with a 1:100 
trypsin-to-protein mass ratio for 4  h. The components 
that were obtained by high pH reversed-phase separation 
were redissolved in 20 µl of 2% methanol and 0.1% for-
mic acid solution. The sandwich method was used, and 
10 µl of peptide samples were separated using a C18 col-
umn with a flow rate of 350 nl/min. The isolated peptides 
were detected by mass spectrometry. The mass spectral 
data were analyzed and screened by MaxQuant software, 
and the identified differentially expressed proteins were 
matched by searching the UniProt Human database. The 
default cutoff value of a twofold change was used, and 
a p value < 0.05 was considered to indicate a significant 
difference.

Transcriptomics analysis
Forty-three heart samples were used to perform tran-
scriptomics analysis at the Novogene Co., Ltd. (Beijing, 
China). Briefly, the total RNA was isolated using RNeasy 
kit (Qiagen China (Shanghai) Co Ltd, Shanghai, China), 
and the quality was analyzed using an Agilent 2100 bio-
analyzer (Agilent technologies, California, CA, USA). 
The gene expression profiles were investigated using Illu-
mina HiSeq2000 RNA Sequencing (Illumina, San Diego, 
CA, USA).
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Bioinformatics analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis of the significantly upregulated or downregulated 
proteins or mRNAs (p value < 0.05 and | log2 FoldChange 
(FC) |> 1.2 or < 0.44) was performed with the “cluster-
Profiler” package for functional enrichment [15]. KEGG 
analysis results that had an adjusted p values of 0.05 were 
considered statistically significant. For hierarchical clus-
tering, protein abundances were clustered using Euclid-
ean as a distance measure for column and row clustering. 
Weighted gene coexpression network analysis (WGCNA) 
was used to perform module identification and the divi-
sion of proteomes or transcriptomes [16], according to 
correlations with different regions of the heart or clini-
cal features. The soft threshold power value was set to 
9 for subsequent analyses. A topological overlap matrix 
(TOM) was used to measure the connection strength 
between genes (Dynamic Tree Cut: minModuleSize = 50; 
Cluster Cut: MEDissThres = 0.25). Uniform Manifold 
Approximation and Projection (UMAP) was used for the 
visualization of cell clusters. Clustering was performed 
to obtain integrated expression values based on shared-
nearest-neighbor (SNN) graph clustering (Louvain com-
munity detection-based method) using “FindClusters” 
with a resolution of 0.8. Sankey analysis was performed 
using the “ggalluvial” package of R software. Mean log2 
ratios of biological triplicates and the corresponding p 
values were visualized with volcano plots.

Spearman correlation coefficients were used to meas-
ure the correlation between mRNA expression and pro-
tein abundance for each gene‒protein pair across all 43 
heart samples. In addition, the p value that corresponded 
to the correlation coefficient was calculated and adjusted 
by FDR correction. The significance of the correlation 
pair was determined based on an adjusted p value cutoff 
of 0.01. Then, the mRNA‒protein matches were deter-
mined with a median Spearman correlation of r = 0.54. 
Moreover, mRNA and protein expression levels were 
positively correlated for most (98.6%) mRNA‒protein 
pairs, and 90.3% showed a significant positive correlation 
(multiple test adjusted p value < 0.01).

Single‑cell RNA sequencing (scRNA‑seq) analysis
Single cell RNA sequence data from human HF tissues 
(LA + LV) were reanalyzed using the FindVariableFea-
tures function, and downstream procedures were per-
formed using the ScaleData and runPCA functions as 
previously described [17, 18].

Transverse aortic constriction (TAC) mouse model
All the animal experimental procedures were approved 
by the Animal Care Ethics Committee of the First 

Affiliated Hospital Zhejiang University School of Medi-
cine, and the experiments were performed in compliance 
with the “Guide for the Care and Use of Laboratory Ani-
mals” from the US National Institutes of Health. Eight-
week-old male C57BL/6J mice were purchased from the 
Model Animal Research Center of Nanjing University 
and housed in the Laboratory Animals Center of the First 
Affiliated Hospital of Zhejiang University School of Med-
icine under conditions of controlled temperature and 
humidity. HF was established in the mice by TAC as pre-
viously described [17, 19]. Briefly, mice were anesthetized 
via the intraperitoneal administration of 0.3% sodium 
pentobarbital (75  mg·kg−1) intraperitoneally, and the 
chest cavity was opened to expose the aortic arch. Then, 
the aortic arch was tied with a 6–0 nylon suture between 
the brachiocephalic and left common arteries with a 
homemade L-shaped 26G cushion needle. After ligation, 
the needle was quickly removed, causing approximately 
70% contraction, and the skin was closed. The sham oper-
ation followed an identical procedure, except that the 
thread was not ligated. Moreover, the mice were injected 
with rAAV9 (4 ×  1011 vector genomes (vg)/mouse) carry-
ing an empty vector, or GSTM2 via the tail vein.

Primary cardiomyocyte isolation and culture
Primary cardiomyocytes were isolated from neonatal 
mice (1–2 days) as previously described [17]. To induce 
hypertrophy, the cardiomyocytes were treated with phe-
nylephrine (PE, 50 μmol/l, Sigma, USA) for 24 h.

Echocardiographic evaluation
Echocardiographic evaluation was performed as previ-
ously described [17]. The left ventricular (LV) end-dias-
tolic diameter (LVEDd) and LV ejection fraction (EF%) 
were measured from the LV M-mode at the mid-pap-
illary muscle level. The mice were euthanized by cervi-
cal dislocation after echocardiographic evaluation at 
4 weeks after the operation. Mouse hearts were dissected 
and weighed or measured to compare the heart weight 
(HW)/body weight (BW) ratios.

Histological study
The heart tissue sections were embedded in paraffin and 
cut into 5-μm serial sections and then stained with a 
hematoxylin and eosin (HE) staining kit (Byotime, China) 
to assess pathological changes in the myocardium, and 
a Masson staining kit (SbjBio, China) was used to eval-
uate cardiac fibrosis according to the manufacture’s 
instructions.

Immunofluorescence
Heart tissue sections were blocked with goat serum at 
room temperature for 30  min, incubated with primary 
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antibodies against α-actinin (1:200, A7811, Sigma, USA) 
and GSTM2 (1:200, Ab196503, Abcam, USA) at 4  °C 
overnight, and treated with fluorescently labeled second-
ary antibodies for 1 h at 37 °C. The nuclei were counter-
stained with DAPI. To evaluate cardiomyocyte size, the 
heart tissue sections were incubated with fluorescein-
conjugated wheat germ agglutinin stain (1:200, Alexa 
Fluor‐488, Invitrogen, CA), and approximately 50–100 
randomly chosen cardiomyocytes were analyzed by using 
ImageJ software to measure the cross-sectional cardio-
myocyte area. To analyze DNA double-stranded breaks 
in cardiomyocytes, the cardiomyocytes were incubated 
with antibodies against histone family member X (H2AX) 
that was phosphorylated at the Ser 139 site (γ-H2AX) 
(1:200, Ab1174, Abcam, USA) and then stained with a 
fluorescently labeled secondary antibody for 1 h at 37 °C. 
After washing, the cells were imaged.

Quantitative real‑time PCR (qRT‒PCR) and enzyme‑linked 
immunosorbent assay (ELISA)
After infection with AAV9-GSTM2 or AAV9-Control 
for 48 h and then treatment with or without PE for 24 h, 
the cell culture supernatants were collected to meas-
ure the protein levels of IFN-α and IFN-β using the 
Mouse Interferon alpha 1 ELISA Kit (ab252352, Abcam) 
and Mouse  IFN beta ELISA Kit (ab252363, Abcam), 
respectively. To further explore the effect of cardiomyo-
cytes on macrophages, cell culture supernatants from 
treated cardiomyocytes were incubated with RAW264.7 
macrophage cultures for 24  h. Then, total RNA was 
extracted with TRIzol reagent (Invitrogen, USA), and 
reverse-transcribed into cDNA using PrimeScript RT 
Master Mix (Takara, Japan). A SYBR Premix Ex TaqII 
(Takara, Japan) kit was used for qRT‒PCR with an ABI 
PRISM 7500 Detection System (ABI, USA). Relative 
expression values were normalized to GAPDH expres-
sion. Lentivirus was purchased from Gene-Pharma 
Company (Shanghai, China). The primers that were used 
were as follows: interleukin-6 (IL-6), F 5ʹ-TCT ATA CCA 
CTT CAC AAG TCGGA-3ʹ, and R 5ʹ-GAA TTG CCA TTG 
CAC AAC TCTTT-3ʹ; tumor necrosis factor-α (TNF-α), 
F 5ʹ-CTG AAC TTC GGG GTG ATC GG-3ʹ, and R 5ʹ-GGC 
TTG TCA CTC GAA TTT TGAGA-3ʹ; interferon-stimu-
lated gene 15 (ISG15), F 5ʹ-GGT GTC CGT GAC TAA CTC 
CAT-3ʹ, and R 5ʹ-TGG AAA GGG TAA GAC CGT CCT-3ʹ; 
myxoma resistance 1 (Mx1), F 5ʹ-GAC CAT AGG GGT 
CTT GAC CAA-3ʹ, and R 5ʹ-AGA CTT GCT CTT TCT 
GAA AAGCC-3ʹ; chemokine (C-X-C motif ) ligand 10 
(Cxcl10), F 5ʹ-CCA AGT GCT GCC GTC ATT TTC-3ʹ, and 
R 5ʹ-GGC TCG CAG GGA TGA TTT CAA-3ʹ; and GAPDH, 
F 5ʹ-TGG ATT TGG ACG CAT TGG TC-3ʹ, and R 5ʹ-TTT 
GCA CTG GTA CGT GTT GAT-3ʹ.

Western blotting
Western blotting was performed as previously described 
[17]. Primary antibodies against IRF3 (1:1000, 11312-1-
AP, Proteintech), STAT1 (1:1000, 66545-1-Ig, Protein-
tech), phosphorylated IRF3 (pIRF3) (1:1000, ab76493, 
Abcam), phosphorylated STAT1 (pSTAT1) (1:1000, 
ab215820, Abcam) and GAPDH (1:1000, ab8245, Abcam, 
USA) were used.

Statistical analysis
All the statistical analyses were performed with 
GraphPad Prism 7.0. The data are expressed as the 
mean ± standard deviation (SD). Differences between two 
groups were analyzed by using unpaired Student’s t test. 
Furthermore, differences among multiple groups were 
analyzed by using two-way ANOVA. Differences were 
considered statistically significant when p < 0.05.

Results
Proteomics analysis of human HF samples
To obtain an overview of the detailed changes in protein 
and mRNA expression that occur in HF, we collected 
a total of 43 samples from 8 HF samples and 3 healthy 
donors, including 8 LA samples, 8 LV samples, 8 RA sam-
ples, 8 RV samples, 8 IVS samples, and 3 healthy CLA 
samples, for proteomics and transcriptomics analysis. 
A total of 5311 proteins were identified in all the heart 
regions (Fig. 1A). We then assessed the proteomic simi-
larities and differences in the 43 heart regions with t-dis-
tributed stochastic neighbor embedding (tSNE) analysis 
and found that the atrial (CLA, LA and RA) and ven-
tricular (IVS, RV and LV) regions were clearly clustered 
(Fig.  1B). Furthermore, the expression of the identified 
proteins in different heart regions from different sam-
ples were similar (Fig.  1C and D, and Additional file  2: 
Figure S1A and B), suggesting unbiased results of prot-
eomics analysis. Moreover, the significantly differentially 
expressed proteins in different regions of the HF samples 
intersected with each other, and 166 s proteins that were 
specifically upregulated (p < 0.05 and FC > 1.2) in the LA, 
16 proteins in the RV, 220 proteins in the RA, 18 pro-
teins in the LV and 20 proteins in the IVS were identi-
fied, respectively (Fig.  1E). Thirty-seven proteins that 
were specifically downregulated (p < 0.05 and FC < 0.44) 
in the LA, 237 proteins in the RV, 47 proteins in the RA, 
72 proteins in the LV and 118 proteins in the IVS were 
identified (Fig.  1E). As expected, heart tissue markers, 
such as titin (TTN) [20], myosin heavy chain 7 (MYH7) 
[17], plectin (PLEC) [21] and desmoplakin (DSP) [22], 
were enriched in all the samples (Additional file 2: Figure 
S1C and D). TXNRD1, ADH1B, CD14, GCLC, NPPA, 
and NPPB were more enriched in the atrial tissues, while 
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SRP54, COX20, PLIN5, MAP3K5, PFKFB2 and SLC12A7 
were more enriched in the ventricular tissues (Additional 
file 2: Figure S1E), suggesting differential metabolism and 
inflammation states between these tissues. QPCR analy-
sis also yielded consistent results (Additional file 2: Figure 

S1F and G). Moreover, KEGG analysis showed that the 
proteins that were specifically upregulated in the LA 
were enriched in the pyruvate metabolism and pentose 
phosphate pathway, those in the IVS were enriched in 
the tight junction, nitrogen metabolism and peroxisome 
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Fig. 1 Proteomics analysis of samples from human heart failure patients. A Schematic depiction of the experimental design. B t-distributed 
stochastic neighbor embedding (tSNE) analysis of the 43 heart samples based on their proteomic expression profiles. C, D All protein ratios 
of different positions in every sample. E Commonly and specifically expressed proteins in five heart regions. F KEGG analysis of the proteins 
that were specifically upregulated in five different heart regions. G KEGG analysis of the proteins that were specifically downregulated in five 
different heart regions
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proliferator-activated receptors (PPAR) signaling path-
way, those in the LV were enriched in the forkhead box 
protein O (FoxO) signaling pathway and apelin signaling 
pathway, those in the RA were enriched in the regula-
tion of glutathione metabolism and cysteine and methio-
nine metabolism, and those in the RV were enriched in 
the apelin signaling pathway and PPAR signaling path-
way (Fig.  1F). In addition, the KEGG analysis showed 
that the proteins that were specifically downregulated 
in the LA were enriched in tight junction and hyper-
trophic cardiomyopathy, those in the IVS were enriched 
in pyruvate metabolism and carbon metabolism, those 
in the LV were enriched in pyruvate metabolism and car-
bon metabolism, those in the RA were enriched in focal 
adhesion and the PPAR signaling pathway, and those in 
the RV were enriched in biosynthesis of amino acids and 
cysteine and methionine metabolism (Fig. 1G). Interest-
ingly, the metabolic pathways (pyruvate metabolism and 
carbon metabolism) that were enriched in atrial tissues 
were not enriched in ventricular tissues. However, PPAR 
signaling, which was enriched in ventricular tissues, was 
lacking in atrial tissues.

Identification of key modules based on WGCNA
Next, we further performed unsupervised hierarchi-
cal clustering of the identified proteins that exhibited 
significantly different expression across the samples 
(FDR < 0.05). As expected, atrial samples were more 
similar than ventricular samples indicating that atrial 
and ventricular tissues had different protein expression 
patterns (Fig.  2A). Furthermore, the proteins could be 
clustered into nine modules, and module MEmagenta 
had high similarity to module MEturquoise. The other 
seven modules had high similarity (Fig.  2B), as deter-
mined by WGCNA, which is a method for analyzing the 
gene expression patterns of multiple samples that can 
be used to cluster genes and form modules according to 
similar gene expression patterns and analyze the rela-
tionship between modules and specific features. Corre-
lation analysis of the nine modules and different heart 
regions showed that turquoise (module MEturquoise)-
related proteins were lacking in atrial samples (LA and 
RA) but were enriched in ventricular samples (IVS, 
LV and RV). Blue (module MEblue)-related proteins 
showed the opposite trends (Fig.  2C). Moreover, the 
KEGG analysis showed that proteins in the turquoise 
module were mainly enriched in peroxisome, diabetic 
cardiomyopathy, and amino sugar and nucleotide sugar 
metabolism, suggesting changes in the metabolic state 
of ventricular tissue. The proteins in blue module were 
enriched in COVID-19, systemic lupus erythematosus 
(SLE) and Staphylococcus aureus (SA) infection, sug-
gesting that inflammatory pathways were activated 

in atrial tissues (Fig.  2D). These results indicated that 
there was a great difference in the change in protein 
expression pattern between the atria and ventricles of 
the myocardium from patients with HF. Amino acid 
metabolism-related proteins were upregulated in the 
ventricular myocardium, while extracellular matrix, cell 
adhesion and cholesterol metabolism-related proteins 
were downregulated. The changes in the atrium exhib-
ited the opposite trends. In addition, correlation analy-
sis of the nine modules and patient clinical features 
showed that the green module was positively associ-
ated with heart rate, and the proteins in the turquoise 
module were mainly enriched in glycolysis, carbon 
metabolism, and the hypoxia-inducible factor (HIF)-1 
signaling pathway. The brown module was positively 
associated with the short-axis shortening rate (FS) and 
ejection fraction (EF), and the proteins in the brown 
module were mainly enriched in the complement and 
coagulation cascades (Fig. 2E).

Identification of key modules for transcriptomics based 
on WGCNA
To obtain a functional view of the transcriptomic dif-
ferences among human HF samples, unsupervised 
hierarchical clustering of the identified genes that were 
significantly differentially expressed in different heart 
regions (FDR < 0.05) was used to cluster individuals 
(Additional file  2: Figure S2A). Coexpression analysis 
by WGCNA showed that the transcripts were clustered 
into nine modules; MEgreen, MEblue and MEbrown 
had high similarity, and the other six modules had a 
high similarity (Additional file 2: Figure S2B). Correla-
tion analysis of the nine modules and different heart 
regions showed that the red module was enriched in 
the RA and lacking in the LV, and the transcripts in the 
red module were mainly enriched in vascular smooth 
muscle contraction, and the focal adhesion signal-
ing pathway (Additional file  2: Figure S2C). The green 
module was enriched in the RV and lacking in the LA, 
and the transcripts in the green module were mainly 
enriched in carbon metabolism, the TCA cycle, dia-
betic cardiomyopathy, pyruvate metabolism, and fatty 
acid metabolism (Additional file 2: Figure S2C). Corre-
lation analysis of the nine modules and patient clinical 
features showed that the black module was positively 
associated with creatine kinase (CK), alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), 
lactate dehydrogenase (LDH), clopidogrel administra-
tion, and a previous medical history of percutaneous 
coronary intervention (PCI), and it was negatively asso-
ciated with diuretic administration (Additional file  2: 
Figure S2D).
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Multiomics analysis of HF disease signatures
Subsequently, we integrated proteomics and transcrip-
tomics data to examine the combined contribution to 
HF, and a subset of genes/proteins that were commonly 
observed in the different anatomical regions was selected 

for further analysis. Principal component analysis (PCA) 
showed that the genes/proteins were separated into 
two clusters, mainly an atrial cluster (LA and RA) and a 
ventricular cluster (IVS, RV and LV) (Fig.  3A). Further-
more, the pseudotime series analysis showed that the 
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Fig. 3 Multiomics analysis of disease signatures of heart failure. A Principal component analysis (PCA) of the 40 samples from heart failure patients 
based on their proteomic expression profiles. B Pseudotime series analysis of the correlation between protein/RNA profiles and heart regions. C 
WGCNA of the correlation between protein expression and RNA transcription in the indicated three modules. D Sankey analysis of heart regions, 
modules, signaling pathways, and proteins/RNAs
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correlation between protein and RNA expression was 
stronger in the LA and RA regions than in the RV, LV 
and IVS regions, suggesting that different expression pat-
terns in atrial and ventricular tissues during HF (Fig. 3B). 
Moreover, WGCNA showed that the correlation between 
protein expression and RNA transcription was strong-
est in the turquoise module (degeneration pathway), blue 
module (ion signal) and pink module (inflammation) 
(Fig. 3C), suggesting that these biological activities were 
similarly regulated in different cardiac regions. Interest-
ingly, Sankey analysis showed that the downregulated 
proteins/RNAs in the LA and RA regions, and the upreg-
ulated proteins/RNAs in the RV, LV and IVS regions were 
all enriched in the turquoise modules, and these pro-
teins/RNAs were involved in protein processing in the 
endoplasmic reticulum, amyotrophic lateral sclerosis and 
Huntington disease (Fig. 3D).

Analysis of the differentially expressed genes in HF 
samples
Next, we analyzed the differentially expressed genes in 
the HF samples (LA + LV + RA + RV + IVS) compared to 
the normal atrial tissues (CLA). As shown in Fig. 4A and 
B, 37 significantly upregulated genes and 42 significantly 
downregulated genes were identified. Furthermore, 
KEGG analysis showed that Catenin beta1 (CTNNB1) 
was significantly upregulated, and acetyl-CoA carboxy-
lase 1 (ACACA), Rubisco accumulation factor 1 (RAF1), 
peroxisomal trans-2-enoyl-CoA reductase (PECR) 
and microsomal glutathione transferase (MGST) were 
notably downregulated (Fig.  4C). Moreover, we found 
that several glutathione S-transferase (GST)-related 
genes, including MGST1, glutathione S-transferase T1 
(GSTT1), glutathione transferase zeta1 (GSTZ1), and 
glutathione S-transferase M2-2 (GSTM2), were identi-
fied among the most downregulated signaling pathways 
(Fig.  4D). Finally, KEGG analysis of the differentially 
expressed genes in the LV, RV and IVS was performed. As 
shown in Fig.  4E–G, most pathways that were enriched 
in the LV, RV and IVS regions were similar. Interestingly, 
the antigen processing and presentation pathway was 
enriched in the IVS regions, and energy metabolic path-
ways were more enriched in the LV and RV regions, while 
GST family members were lacking in all ventricular sam-
ples, suggesting that oxidative stress was imbalanced in 
cardiomyocytes.

GSTM2 is reduced in hypertrophic heart tissues
First, we measured the expression of GSTT2, GSTZ1 
and GSTM2 in human cardiomyocytes using published 
scRNA-seq data [18]. As shown in Fig. 5A, GSTM2 was 
more highly enriched than GSTZ1 and GSTT2. Consist-
ent with the scRNA-seq data, our proteomics analysis 

indicated that GSTM2 was the most highly expressed 
GST (Fig.  5B). Moreover, we also measured the mRNA 
and protein levels of GSTM2 and GSTZ1 in clinical sam-
ples and obtained consistent results (Additional file  2: 
Figure S3A and B). However, GSTM2 was reduced in 
hypertrophic heart tissues from both humans and mice 
(Fig.  5C and D, and Additional file  2: Figure S3D). We 
suspected that GSTM2 participated in cardiac hyper-
trophy progression. To test our hypothesis, a GSTM2 
overexpression vector (AAV9-GSTM2) was administered 
to the hearts of TAC model mice by tail vein injection 
(Additional file  2: Figure S3C). GSTM2 overexpression 
indeed partly reversed TAC-induced cardiac hypertrophy 
(Additional file 2: Figure S3E and F) and collagen deposi-
tion (Fig. 5E). In addition, heart function, including HW/
BW, LVEDd and EF, was improved after AAV9-GSTM2 
delivery (Fig. 5F, G and Additional file 2: Figure S3G and 
H). These results indicate that GSTM2 mitigates cardiac 
hypertrophy progression.

GSTM2 attenuates DNA damage in hypertrophic heart 
tissues
As GST family members mainly sustain oxidative stress 
homeostasis to alleviate DNA damage [23], we further 
determined the effect of GSTM2 on DNA damage in 
in  vitro and in  vivo models of HF. As shown in Fig.  6A 
and B, DNA damage was notably induced in cardiomyo-
cytes after PE stimulation, as evidenced by the detection 
of γ-H2AX (a marker of DNA damage) [23] expression 
and 8-OHDG (a metabolite of DNA damage) [24] con-
tents. Further, 8-OHDG was also significantly increased 
in the TAC model mice HF samples and human HF sam-
ples (Fig. 6C and E). Interestingly, the levels of extrachro-
mosomal circular DNA elements (eccDNAs), which are 
always released during DNA damage [25, 26], were also 
increased in hypertrophic heart tissues (Fig.  6D and F). 
However, overexpression of GSTM2 by AAV9-GSTM2 
infection notably alleviated DNA damage, as evidenced 
by decreased γ-H2AX expression in PE-treated cardio-
myocytes (Fig.  6G) and inhibiting of 8-OHDG produc-
tion (Fig. 6H) and eccDNA release in mouse HF samples 
(Fig.   6I). Collectively, these data indicate that GSTM2 
attenuates DNA damage in hypertrophic heart tissues.

GSTM2 alleviates IFN‑I‑stimulated macrophage 
inflammation
eccDNA is a potent innate immunostimulant that can 
generally trigger type I interferon (IFN-I) production 
by activating cGAS-Sting-IRF3 signaling [25]. We fur-
ther investigated whether injured cardiomyocytes could 
affect macrophage inflammation, and we found that 
culture supernatants from PE-treated cardiomyocytes 
significantly promoted IL-6 and TNF-α transcription in 
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Fig. 4 Analysis of the differentially expressed genes in samples from heart failure patients. A Volcano plot of the differentially expressed genes 
in samples from heart failure patients. B Heatmap of the differentially expressed genes in different heart samples. C and D KEGG analysis 
of the differentially expressed genes. E, F and G KEGG analysis of the differentially expressed genes in the LV, RV and IVS, respectively
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macrophages (Fig.  7A). However, pretreatment of car-
diomyocytes with AAV9-GSTM2 reversed this effect 
(Fig. 7B). IFN-Is are essential cytokines for macrophage-
mediated inflammatory effects, and all the effects of IFN-
Is are mediated by IFN-stimulated genes (ISGs), such as 
ISG15, Mx1 and CXCL10; the expression of these genes 
is induced through type I interferon receptor subunit 1 
(IFNAR1), followed by the activation of the Janus kinase 
(JAK)-signal transducer and activator of transcrip-
tion (STAT) signaling [27]. Furthermore, we found that 
the addition of culture supernatants from PE-treated 
GSTM2-overexpressing cardiomyocytes notably inhib-
ited STAT1 phosphorylation (Fig.  7C) and ISG expres-
sions (Fig. 7D). Moreover, consistent with the finding that 
eccDNA triggers IFN-I production by activating cGAS-
Sting-IRF3 signaling [25], GSTM2 overexpression attenu-
ated IRF3 phosphorylation in PE-treated cardiomyocytes 
(Fig.  7E) as well as IFN-I production (Fig.  7F). In addi-
tion, blocking IFNAR1 with an anti-IFNAR1 antibody 
significantly inhibited the macrophage inflammation that 
was induced by culture supernatants from PE-treated 
cardiomyocytes (Fig. 7G). Collectively, these results indi-
cate that GSTM2 inhibits cardiomyocyte eccDNA and 
IFN-I release, which causes macrophage inflammation 
during the progression of cardiac hypertrophy.

Discussion
HF seriously threatens people’s lives worldwide [28]. 
Recently, a proteomic map of the healthy human heart 
was established as a reference for comparison against 
footprints of malfunctioning hearts [11]. In this study, we 
analyzed the proteomics and transcriptomics of healthy 
and hypertrophic human hearts. Importantly, our study 
shows that there are substantial differences in changes 
in protein expression between the atria and ventricles of 
myocardium tissues from patients with HF. Interestingly, 
the metabolic state was altered in the ventricular tissues 
from HF patients, and inflammatory pathways were acti-
vated in atrial tissues. In addition, we found that GSTM2, 
which is a detoxification enzymes, was significantly 
decreased in HF samples, and GSTM2 in cardiomyocytes 
inhibited DNA damage and eccDNA production, thereby 

alleviating macrophage activation and inflammation and 
eventually ameliorating cardiac hypertrophy. Our study 
provides a framework for the deeper interrogation of 
proteomics and transcriptomics of HF in humans, and 
highlights the functional importance of GSTM2 in the 
heart, and provides a novel therapeutic target for HF.

The atria are mainly responsible for collecting and 
transferring pulmonary and systemic blood, and ventri-
cles are responsible for pumping blood throughout the 
entire body [29]. Consistent with their functions, mito-
chondrial proteins and lipid metabolism-related proteins 
were more abundant in healthy ventricles than in atria 
[11]. An increasing number of studies have reported 
that immune activation and inflammation are consid-
ered important drivers of cardiac remodeling and HF 
[30, 31]. Interestingly, we found that the proteins that 
were specifically upregulated in the atria of HF samples 
were mainly enriched in the complement and coagula-
tion cascades, which cause overt inflammation, throm-
botic microangiopathy and end-organ damage [32–34]; 
however, the proteins that were specifically upregulated 
in the ventricles of HF samples were mainly enriched in 
the FoxO signaling pathway, which is involved in main-
taining cardiomyocytes in the homeostatic state and 
inducing their adaptation to metabolism [35, 36], and the 
apelin signaling pathway, which plays a critical role in the 
positive inotropic effect and maintains cardiac contractil-
ity [37, 38]. The proteins that were specifically downregu-
lated in the atria of HF samples were mainly enriched in 
the tight junction and focal adhesion signaling pathways, 
indicating endothelial dysfunction and cardiac inflam-
mation [39, 40]. These findings suggest that inflamma-
tion may occur in the atria in the early stage of HF and 
that activation of FoxO and apelin signaling pathways in 
the ventricles represents an attempt to maintain cardiac 
contractility. Consistent with our speculation, pseudo-
time alignment of cardiomyocytes with reduced cardiac 
function (2–5  weeks) from a pressure overload-induced 
cardiac hypertrophy mouse model exhibited significant 
enrichment in the immune response and the response 
to cytokines and chemokines, indicating increased 
inflammation [41]. Activation of proinflammatory 

(See figure on next page.)
Fig. 5 Analysis of the differentially expressed genes in samples from heart failure patients. A 2D visualization of GSTT2, GSTZ1 and GSTM2 gene 
expression in the LV and LA. B Analysis of GSTT2, GSTZ1 and GSTM2 protein abundances according to proteomics. C Immunofluorescence analysis 
of GSTM2 (red) expression in cardiomyocytes (stained with the cardiomyocyte marker α-actinin, green) from clinical human cardiac hypertrophy 
(CH) tissues and normal heart tissues. The nuclei were stained with DAPI (blue). Scale bar: 200 μm. D Immunofluorescence analysis of GSTM2 
(red) expression in cardiomyocytes (stained with the cardiomyocyte marker α-actinin, green) from the heart tissues of sham or TAC model mice. 
The nuclei were stained with DAPI (blue). Scale bar: 100 μm. E Representative Masson staining results to assess fibrosis in heart tissues from mice 
injected with AAV9-GSTM2 or control AAV9 via the tail vein for 3 weeks, then subjected to TAC, and analyzed 4 weeks later. F Statistical analysis 
of the heart weight (HW)/body weight (BW) ratios of mice subjected to TAC surgery 4 weeks after surgery (n = 6 mice per group; *p < 0.05 
versus sham group). G Assessment of left ventricular end-diastolic diameter (LVEDd) in mice, n = 6. *p < 0.05
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Fig. 5 (See legend on previous page.)
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macrophages, which are characterized by abundant 
expression of inflammatory markers, is a key event in 
the middle stage of cardiac hypertrophy; inhibition of 
macrophage activation by dapagliflozin, which a sodium 
glucose cotransporter 2 inhibitor, in clinical trials for 
patients with HF as well as by TD139 and arglabin, which 
are two novel anti-inflammatory agents that are used to 
treat cardiac diseases, preserves cardiac function and 

attenuates fibrosis [41]. Thus, alleviation of the inflamma-
tory response is essential for preventing HF in the early 
stage of cardiac hypertrophy.

GSTs, which are key multifunctional phase II detoxi-
fication enzymes, play essential roles in detoxification, 
metabolism, and prevention of oxidation [42, 43]. Our 
study found that several GST family members, including 
MGST1, GSTT1, GSTZ1, and GSTM2, were significantly 

Fig. 6 GSTM2 attenuates DNA damage in hypertrophic heart tissues. A Immunofluorescence analysis of γ-H2AX (green) in primary cardiomyocytes 
stimulated with phenylephrine (PE, 50 μmol/l), or DMSO (as a control) for 24 h. Nuclei were stained with DAPI (blue). Scale bar: 50 μm. B Assessment 
of the 8-OHDG contents in the culture supernatants from PE- or DMSO (as a control)-treated cardiomyocytes. n = 6. *p < 0.05. C Assessment 
of the 8-OHDG contents in the heart tissues of sham or TAC model mice. n = 6. *p < 0.05. D Representative confocal immunofluorescence 
images of cardiomyocytes (α-actinin, green) from heart tissues of sham or TAC model mice. The nuclei were stained with DAPI (blue). eccDNA 
was quantified by analyzing the intensity of DAPI outside nuclei. *p < 0.05. Scale bar: 100 μm. E Assessment of the 8-OHDG contents in clinical 
human heart failure (HF) tissues and normal heart tissues (as control). n = 3. *p < 0.05. F Representative confocal immunofluorescence images 
of cardiomyocytes (α-actinin, red) from clinical human HF tissues and normal heart tissues (as control). The nuclei were stained with DAPI (blue). 
eccDNA was quantified by analyzing the intensity of DAPI outside the nuclei. *p < 0.05. Scale bar: 100 μm. G Immunofluorescence analysis of γ-H2AX 
(green) in primary cardiomyocytes infected with AAV9-GSTM2 or control AAV9 for 48 h and then treated with PE for 24 h. Scale bar: 200 μm. H 
Assessment of the 8-OHDG content in the culture supernatants from cardiomyocytes infected with AAV9-GSTM2 or control AAV9 for 48 h and then 
treated with PE for 24 h. n = 6. *p < 0.05. I Representative confocal immunofluorescence images of cardiomyocytes (α-actinin, green) from the heart 
tissues of TAC model mice infected with AAV9-GSTM2 or control AAV9. The nuclei were stained with DAPI (blue). eccDNA was quantified 
by analyzing the intensity of DAPI outside the nuclei. *p < 0.05. Scale bar: 100 μm
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decreased in the HF samples, and GSTM2 was the most 
widely distributed in heart tissues. A previous study 
showed that GSTM2 was significantly reduced in the 
LV of 16-week-old spontaneously hypertensive rats and 
functioned to protect cells from OS-associated damage 
and cell death [44]. GSTM2 efficiently alleviated benzo[a]
pyrene-diolepoxide- or benzo[a]pyrene-diolepoxide-
induced DNA damage in lung cancer cells [45, 46]. Con-
sistent with a previous study, our study also showed that 
GSTM2 was reduced in hypertrophic heart tissues from 
both humans and mice. Furthermore, overexpression of 
GSTM2 efficiently alleviated cardiac hypertrophy and 
improved heart function by inhibiting DNA damage, 
eccDNA production, and IFN-I release by cardiomyo-
cytes and suppressing macrophage inflammation. Inter-
estingly, a similar reduction in GSTM2 was identified in 
the LVs and aortas of 4-, 8-, and 16-week-old spontane-
ously hypertensive rats, which develop numerous cardio-
vascular complications, including cardiac hypertrophy 
and HF before the onset of hypertension [47, 48]. This 

suggests that a reduction in GSTM2 in the early stage 
may be an essential inducer of cardiac hypertrophy and 
HF. Recently, GSTM2 was shown to be a key molecular 
determinant of resistance of prostate to several second-
generation androgen receptor inhibitors (SG-ARIs), 
and aryl hydrocarbon receptor (AhR) is the upstream 
transcription factor that induce the overexpression of 
GSTM2 in enzalutamide-resistant PCa [49]. However, 
whether the reduction in GSTM2 in heart tissues during 
the progression of cardiac hypertrophy and HF is related 
to AhR and the underlying mechanism need to be further 
investigated in future studies.

There are still some limitations in the present study. 
First, the samples that were used for the proteomic 
and transcriptomic analyses were obtained from only 
eight HF patients and three healthy donors. More 
samples need to be collected to further confirm our 
results in future studies. Second, AAV-mediated 
GSTM2 overexpression was used to explore the ben-
eficial role of GSTM2 in TAC model mice. Mice with 
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Fig. 7 GSTM2 alleviates IFN-I-stimulated macrophage inflammation. A qRT‒PCR analysis of IL-6 and TNF-α mRNA expression in RAW264.7 
macrophages treated with culture supernatants from PE- or DMSO-treated cardiomyocytes. n = 3. *p < 0.05. B qRT‒PCR analysis of IL-6 and TNF-α 
mRNA expression in the RAW264.7 macrophages treated with culture supernatants from PE-treated cardiomyocytes infected with AAV9-GSTM2 
or control AAV9. n = 3. *p < 0.05. C Western blotting analysis of STAT1 and p-STAT1 expression in RAW264.7 macrophages treated with culture 
supernatants from PE-treated cardiomyocytes infected with AAV9-GSTM2 or control AAV9. GAPDH was used as a loading control. D qRT‒PCR 
analysis of ISG15, MX1, and CXCL10 mRNA expression in RAW264.7 macrophages treated with culture supernatants from PE-treated cardiomyocytes 
infected with AAV9-GSTM2 or control AAV9. n = 3. *p < 0.05. E Western blotting analysis of IRF3 and p-IRF3 expression in the cardiomyocytes treated 
with PE alone or combined with AAV9-GSTM2 infection. GAPDH was used as a loading control. F Assessment of IFN-α and IFN-β levels in the culture 
supernatants from PE-treated cardiomyocytes infected with AAV9-GSTM2 or control AAV9. n = 3. *p < 0.05. G qRT-PCR analysis of IL-6 and TNF-α 
mRNA expression in RAW264.7 macrophages treated with culture supernatants from PE- and IFNAR1 antibody-treated cardiomyocytes. n = 3. 
*p < 0.05
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cardiomyocyte-specific GSTM2 overexpression should 
be constructed and used in future studies.

In conclusion, our study establishes a proteomic and 
transcriptomic map of human HF tissues, highlights 
the functional importance of GSTM2 in HF progres-
sion, and elucidates potential new targets for treatment 
of cardiac hypertrophy and HF.
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