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Abstract

Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strate-
gies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimen-
tal evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals.
The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors

and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its
influence on the immune system. In the last few decades, with the development of next-generation sequencing
(NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy
through the immune system has been gradually confirmed. Here, we review important studies published in recent
years focusing on the influences of microbiota on immune system and the progression of malignancy. Further-

more, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint
blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate
the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more system-
atic understanding of tumor treatment in the future and promote basic research and clinical application in related

fields.
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Introduction

Cancer is the second leading cause of human death. The
prevention and control of cancer is still challenging. Pop-
ulation expansion and aging, which have been reflected
in the growth rate of the number of cancer diagnoses
and deaths due to cancer, inevitably challenge the pro-
cess of rapid social and economic development and are
important indicators of its quality. With the increasing
incidence of cancer, research on its treatment has long
been a popular and difficult topic in modern biology and
medicine. Traditional tumor treatment methods, includ-
ing chemotherapy, radiotherapy and surgical resection,
are prone to drug resistance, have a high recurrence rate
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and greatly harm the patient’s body, which limits their
prognostic effect. Therefore, new tumor treatment strate-
gies that induce less resistance are urgently needed. Over
the past few decades, a large amount of basic experimen-
tal data and clinical trial results have shown that immu-
notherapy has the potential to change this situation.
However, these treatments have different outcomes in
different patients; some patients experience lasting ben-
efits, and others do not benefit at all, which limits their
clinical application [1-4]. This situation makes the devel-
opment of innovative combination therapy to overcome
drug resistance and improve the response rate an impor-
tant aspect of tumor therapy research.

With the progress and development of whole genome
sequencing technology, a substantial amount of evidence
has shown that the microbiota in the human body has an
important influence on the effect of tumor therapy [5, 6].
It is estimated that a normal adult can be colonized with
up to 3x10'® commensal microbial cells, totaling over
3000 species, with over 97% colonizing the colon and the
rest distributed throughout the body [7, 8]. A variety of
factors can influence the symbiotic microbial composi-
tion within an individual, such as the composition of the
maternal flora, the manner in which the infant is deliv-
ered, diet, exposure to antibiotics or other drugs, lifestyle,
and environmental factors [9]. Thus, in contrast to the
relative uniformity of microbes among different individu-
als at the phylum level, the composition of gut microbes
at the species level varies greatly among individuals,
making it difficult for researchers to define the compo-
sition of the core healthy gut microbes in humans. This
challenge suggests that it may be more appropriate to
define indicators of a core healthy microbiome based on
the microbial function indicated by the presence of genes
involved in microbial metabolic pathways [10, 11].

Commensal microbiomes are closely related to body
health, and their disorders can lead to a variety of dis-
eases [12, 13]. Increasing attention has been given to
the relationship between the gut microbiome and the
occurrence and development of tumors [14—16]. In addi-
tion, with the in-depth study of tumor therapy in recent
years, a large amount of data has shown that the gut
microbiota has a considerable impact on the results of
the treatment of various types of tumors, including lung
and kidney cancers [17], melanoma [18], and colorectal
cancer [19]. Most studies have confirmed that the gut
microbiota affects the antitumor response by influencing
the immune system. In response to these findings, several
strategies have been developed to alter gut microbiome
composition and ultimately prolong progression-free
survival (PFS) and overall survival (OS) in patients.

Here, we review important studies published in recent
years focusing on the influences of the microbiota on
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the maturation of the immune system. Furthermore, we
emphasize the microbiota and the mechanisms under-
lying its effects on tumor immunotherapy, including
ICB and ACT; we also highlight strategies that shape
the microbial composition to facilitate the antitumor
immune response to enable a more systematic under-
standing of tumor treatment in the future and promote
basic research and clinical application in related fields.

Gut microbiome and tumor progression

One of the hallmarks of malignant tumors is gene insta-
bility and mutation [20, 21], and certain gut microbes
that can induce gene mutation have an important influ-
ence on the occurrence and progression of tumors, espe-
cially in the gastrointestinal system [22, 23]. Regarding
the specific mechanism of microbes affecting tumors,
current research results mainly support two modes of
action: direct and indirect carcinogenic effects. Some
bacteria have direct carcinogenic effects and are known
as carcinogenic microorganisms. For example, Helico-
bacter pylori can produce viral factors, including ure-
ase, which act on epithelial cells in gastric pits, leading
to endoplasmic reticulum stress, autophagy, oxidative
stress and other inflammatory reactions, thus promot-
ing the pathological changes of gastric tissues, which may
develop into gastric cancer [24].

Similarly, Salmonella Typhi bacteria that colonize the
gallbladder can also produce a cancer-causing typhoid
toxin, which causes DNA damage and cell cycle changes
in gallbladder cells, leading to gallbladder cancer[25].
Enterotoxigenic Bacteroides fragilis (ETBF) has been
associated with the induction of colitis and colon tumo-
rigenesis [26]. The toxin produced by ETBF can lead to
chronic inflammation in CRC. Mechanistically, ETBF can
migrate from the intestinal tract and localize to the mam-
mary gland, where it induces epithelial cell proliferation
and promotes tumor growth and metastasis in a Toll-like
receptor 4 (TLR4)-dependent pathway [27, 28]. Fusobac-
terium nucleatum adheres to colon tissues through its
unique FadA adhesin, which binds to E-cadherin on the
surface of colon cells and activates -catenin signaling
and Annexin Al, resulting in inflammatory and carcino-
genic responses [29, 30].

In addition, carcinogenic pathogens can also induce
tumorigenesis indirectly through immune cells of the
tumor microenvironment. E nucleatum can express
Fap2 protein in the tumor microenvironment, which
binds to the T-cell immunoglobulin and ITIM domain
(TIGIT) receptor of immune cells and inhibits the cyto-
toxicity of natural killer (NK) cells and activation of T
cells, thus producing immunosuppressive effects and
promoting tumor growth and metastasis [31]. In recent
impressive research reports, Pushalkar et al. induced
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immunogenicity reprogramming of the tumor microen-
vironment by reducing the microbial load in pancreatic
tumors, including a reduction in myeloid-derived sup-
pressor cells (MDSCs) and increased differentiation of
M1-type macrophages, and promoted CD4" T-cell dif-
ferentiation and CD8* T-cell activation, thus improving
the effect of tumor treatment [32]. Ma and colleagues
found that bile acid (BA) produced by intestinal micro-
bial metabolism could act as a messenger to control the
accumulation of chemokine-dependent NKT cells in
the liver and promote liver-specific antitumor immu-
nity [33]. Short-chain fatty acids (SCFAs) could lead to
an increase in the number of Tregs in the colon, as well
as the production of the anti-inflammatory cytokines
interleukin-10 (IL-10) and transforming growth factor-f
(TGE-B), which inhibit the development of tumors [34].
In GF- or antibiotic-treated mice, Kras mutation and p53
gene deletion cannot induce lung cancer because pulmo-
nary symbiotic bacteria can induce the proliferation and
activation of y8T cells and promote the development of
inflammatory tumors through the local release of IL-17
and IL-23 [35]. Another study also found that p53 muta-
tions induced cancer only in the presence of gallic acid,
which was produced by commensal bacteria [36]. All this
evidence suggests that intestinal microbes play an impor-
tant role in tumor progression.

According to the current research results, most of the
microbes that promote tumor progression by inducing
gene instability are somewhat specific microbial species
and their toxic proteins, and the disturbance of intes-
tinal microecology or increased microbial load in the
tumor microenvironment is often related to the inhibi-
tion of antitumor immunity. However, the fine regulation
between intestinal microecological disorders and antitu-
mor immune responses has not been thoroughly eluci-
dated, and most research results lack more general trends
and characteristics, which may be due to the limitation
of the research scale or differences in research methods.

Microbiome-based tumor diagnosis

In view of the nonnegligible influence of the microbiome
on tumor progression, identifying microbial characteris-
tics is a valid means to diagnose the threat and progres-
sion of tumors [37]. CRC and advanced adenoma (AA)
are closely related to the gut microbiome, but AA is
easier to cancerate. To identify AA from CRC, metagen-
omic analysis was used to describe the microbiome pro-
file and microbial single nucleotide polymorphism (SNP)
characteristics [38]. Another recent study distinguished
clinically relevant subtypes of precancerous colorectal
polyps, such as tubular adenomas (TAs) and sessile ser-
rated adenomas (SSAs), through microbial signatures
from 971 patients [39]. Specifically, TA is associated with
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a decrease in microbial methanogenesis and mevalonate
metabolism, while SSAs exhibit increased NAD, bile acid,
and sulfate metabolic potential. This study offers human-
ized evidence that microbial characteristics can serve as
biomarkers of the stage of tumor progression.

In addition to the gut lumen, microbiome-based tumor
diagnosis can also be applied broadly. Yang et al. pro-
vided a random forest analysis approach based on the
oral-gut-tumor microbiome for the early detection of
hepatocellular carcinoma (HCC) [40]. The fecal microbi-
ome is also different between cervical cancer patients and
healthy controls, with Ruminococcus_2 negatively corre-
lated with cancerous stage [41]. Moreover, with the usage
of artificial intelligence, tumor diagnosis has moved to a
new phase. Xu and colleagues exploited an artificial intel-
ligence diagnosis model, called DeepMicroCancer, for
a broad spectrum of cancer types [42]. Combined with
random forest and transfer learning models, DeepMicro-
Cancer covers more than twenty common types of can-
cer, and the accuracy that could be achieved for blood
samples is satisfactory for clinical scenarios.

Impact of the gut microbiome on the immune
system

The commensal microbes distributed throughout the
human body maintain a continuous interaction with
the host. Many researchers believe that the gut, which
exhibits immunoreactions driven by a high density of
microbes, is the largest immune organ in mammals
[14, 43]. Mammalian immune systems have evolved to
fight pathogenic microorganisms due to the interac-
tion between the host and commensal microbes [44].
Early colonization of microbes on mucosal membranes
in mammals plays an important role in the development
and maturation of the immune system. The individuality
and variability of commensal configuration are highest in
the first 3 years, during which infants are more suscep-
tible to pathogen infections, and such life-threatening
infections rarely occur in adulthood [45].

Germ-free (GF) mice are the most commonly used ani-
mal models to study the mechanisms of gut microbes’
influence on immune system development and matu-
ration. The immune system and lymphoid organs are
severely impaired in GF mice [46, 47]; these mice exhibit
a decreased number of Peyer’s patches, a thinner mucus
layer, and a lack of lymphoid follicles in the lamina pro-
pria [48]. In addition, widespread defects in monocytes,
macrophages and neutrophils have been found in the
spleen, bone marrow and liver in GF mice. The numbers
of macrophages from both embryonic and bone marrow
precursors were found to be reduced in the spleen, sug-
gesting that the gut microbiota has an important influ-
ence on the origin and development of bone marrow
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cells [47, 49]. Immunoregulatory Th17 cells in the lamina
propria of the small intestine are absent in GF mice but
are inducible upon colonization by segmented filamen-
tous bacteria (SFB) [50]. Early B-cell maturation in the
intestinal mucosa is regulated by extracellular signals of
symbiotic microorganisms and affects intestinal immu-
noglobulin repertoires [51]. Hence, the relationship
between the microbiota and host is not just characterized
by parasitism that drafts nutrients from the host; instead,
the symbiotic relationship matures host defenses and
immunity.

The regulatory effect on local immunity

A growing number of studies have indicated that the gut
microbiota may influence host immunity through multi-
ple mechanisms, including local and systemic immunity
(Fig. 1). Locally, the gut microbiota is essential for main-
taining the integrity of the mucosal barrier in the intesti-
nal lumen. Disruption of the gut microbiota can lead to
a decrease in mucosal barrier function, which results in
the entry of pathogenic or normal symbiotic bacteria into
the bloodstream and activation of distant pattern recog-
nition receptors (PRRs), triggering an immune response
or inflammation [52, 53]. Gut microbes can activate these
PRRs, such as Toll-like receptors (TLRs), to signal the
immune cells in the gut-associated lymphoid tissue and
mesenteric lymph nodes. Microbe-associated molecular
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patterns (MAMPs) in bacteria, including lipopolysac-
charides (LPS) and peptidoglycan, can be presented by
macrophages as antigens to Peyer’s patches, where they
activate the immune response of antigen-specific B cells
and promote the amplification of IgA-secreting plasma
cells [54]. In addition, DCs produce tight junction (T7)
proteins between intestinal epithelial cells. At the tran-
sepithelial location, DCs can activate TJs and interact
directly with bacteria and related molecules in the intes-
tinal lumen to perceive signals [55]. Under conditions of
infection, the gut microbiota can activate local phago-
cytes directly through PPRs to produce cytokines more
efficiently [56]. The local interaction between the micro-
biota and host actuates defenses against most pathogens
in the gut lumen and the evolution of immunity, which
reemphasizes the existence of symbiotic microbes.

The regulatory effect on systemic immunity

The gut microbiota can also mediate systemic immune
responses by releasing various metabolites into the cir-
culatory system. A key example is SCFAs, which can act
on G-protein-coupled receptor (GPCR) signaling path-
ways or affect epigenetic factors as inhibitors of histone
deacetylases (HDACs). SCFAs, such as butyrate and
propionate, can induce the differentiation of peripheral
Tregs by epigenetic modification of Foxp3 sites [57]. It
has also been reported that butyrate is able to increase
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Fig. 1 The gut microbiome interacts with the immune system locally in the gut and peripherally in the tumor microenvironment (TME). Within
the gut, the gut microbiota plays an essential role in maintaining the mucosal barrier to protect the gut from pathogens. Microbes can interact
with DCs directly and induce their maturation. Some microbiota-derived metabolites, such as SCFAs, inosine, and peptidoglycan, or invasive
microbes can activate macrophages (Mes), T cells and B cells in the lamina propria or Peyer's patches. Systemically, gut microbiota-derived
metabolites can disseminate to distal sites, especially the TME, through the portal vein and interact with tumor-associated lymphocytes,

including DCs, NK cells, Mgs and T cells. CTL cytotoxic T lymphocyte
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interferon-y (IFN-y) and granzyme B (GZMB) expression
in CD8% T cells [58] and induce their transition from
an effector phenotype to a memory phenotype [59]. BA
is another important immunomodulator produced by
microbial metabolism. Studies have shown that BA and
its derivatives can control T-cell differentiation and mac-
rophage polarization, especially inhibiting the function
of Th17 cells [60], thus regulating the intestinal inflam-
matory response [61-63]. Generally, the abundance
of metabolic genes is irregular among microbes. Thus,
these varied metabolites enable the delicate regulation of
the immune response by modulating the gut microbiota
population.

The interplay between innate immunity and gut
microbiota
Host innate immunity requires not only defense against
pathogen invasion but also tolerance to nonpatho-
genic symbiotic microbiota, that is, maintenance of gut
mucosal barrier homeostasis. Various signaling pathways
in intestinal epithelial cells and intestinal immune cells
play an important role in this process. First, TLRs, which
are PRRs, may sense the presence of MAMPs and deter-
mine defense or tolerance. For example, polysaccharide
A (PSA) from Bacteroides fragilis can act on the TIR2/1
heterodimer in cooperation with Dectin-1, thus activat-
ing downstream anti-inflammatory immune regulatory
genes [64]. NOD-like receptors (NLRs) are also innate
immune regulatory sensors. NOD2 inhibits inflamma-
tion of the gut by restricting commensal B. vulgatus [65].
Apart from PRRs, MyD88 and inflammasomes are also
indispensable to host innate immunity for sensing symbi-
otic microbes and maintaining homeostasis. MyD88 is an
adapter for a variety of innate immune receptors that rec-
ognize microbial signals. The absence of MyD88 in Treg
cells in the small intestine leads to the expansion of Th17
cells, inactivation of the IgA immune response, and ini-
tiation of IL-17-dependent intestinal inflammation [66].
The inflammasome induces pyroptosis of infected cells
in response to intense pathogen invasion, thus maintain-
ing homeostasis. For example, the NLRP6 inflamma-
some regulates mucus secretion by “sentinel” goblet cells
to prevent pathogenic intruders [67]. In patients with
ulcerative colitis, it was found that a symbiotic microbial-
induced IgG response and increased activation of FcyR
signaling in the colon mucosa jointly induced NLRP3
activation in macrophages and increased production of
the proinflammatory cytokine IL-1f [68]. In addition to
these immune signaling pathways, innate lymphoid cells
(ILCs) are a class of innate immune cells that specialize
in rapidly secreting cytokines and chemokines to combat
pathogen infection and promote mucosal damage repair
[69]. ILCs are characterized by phenotypic diversity and
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functional plasticity, which are thought to be shaped by
different microbial signals. Guo et al. reported that ILC3s
can mediate immune surveillance, such as Citrobac-
ter rodentium, to facilitate early colonization resistance
through ID2-dependent regulation of IL-22 [70].

The interaction between adaptive immunity and gut
microbiota

The interaction between the gut microbiota and adaptive
immunity is important in the antitumor T-cell response.
Vétizou et al. found that B. thetaiotaomicron- or B. fragi-
lis-mediated TLR4- and IL-12-dependent Thl responses
were associated with the efficacy of cytotoxic T-lym-
phocyte-associated antigen 4 (CTLA-4) blockade [71].
Reconstitution of GF mice with commensal microbiota
abundant in Bifidobacterium longum, Collinsella aero-
faciens, and Enterococcus faecium causes an improved
T-cell response and more efficient anti-PD-L1 therapy
[72]. E. hirae in the gut can translocate into the second-
ary lymphatic organs, activating the Th17 cell response
and promoting the activation of IFN-y-producing y8T
cells, thus improving the therapeutic effect of cyclophos-
phamide on patients with advanced lung cancer and
ovarian cancer [73]. In the study of adaptive immunity
induced by gut microbes, DC cells in enteric-associated
lymphoid tissue or tumor-draining lymph nodes play an
important role in sensing bacteria, presenting bacterial
antigens, and secreting cytokines [74].

Symbiotic bacteria activate antitumor T-cell responses
by molecular mimicry of tumor-associated antigens,
which induces tumor antigen-specific T-cell cross-reac-
tivity. Fluckiger et al. identified a tape measure protein
(TMP)-specific H-2K-restricted CD8" T lymphocyte
response against a prophage found in the genome of E.
hirae. In melanoma patients, tumor antigens that are
cross-reactive with microbial peptides are recognized
by T-cell clones [75]. Similarly, Bessell and colleagues
found that T cells targeting epitope SVYRYYGL (SVY),
expressed in B. breve, cross-react with a model neoanti-
gen, SIYRYYGL (SIY), in B16-SIY. SVY-specific T cells
recognized SIY-expressing melanomas in vivo and led
to beneficial outcomes [76]. Moreover, human leukocyte
antigen (HLA) molecules of both glioblastoma tissues
and tumor cell lines present bacteria-specific peptides,
which are recognized by tumor-infiltrating lymphocyte
(TIL) CD4* T-cell clones [77]. During homeostasis,
Akkermansia muciniphila (AKK) can induce T follicular
helper cells in Peyer’s patches to produce an IgG1 anti-
body-dependent immune response [78]. Moreover,
metabolites produced by bacteria, typically SCFAs [74]
or tryptophan derivatives [79], can also induce T-cell- or
DC cell-dependent adaptive immune responses.
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Therefore, the presence of microbes in the gut allows
the immune system to balance the toleration of beneficial
microbes and the defense against pathogens. The mainte-
nance of this equilibrium is also influenced by the health
state of the host and the stability of the microecology.
Due to the close relationship between the gut microbiota
and the immune system, there is clearly an important
correlation between these commensal organisms and
the efficiency of immune-related therapy. Several stud-
ies have found that gut microbiome disturbances could
affect local and systemic antitumor immune responses
[80-82]. In proportion, changing the immune response
state by regulating the composition of intestinal microbes
may be an effective strategy to improve the efficiency of
the treatment of different tumors.

The gut microbiome in tumor immunotherapy

The rapid proliferation of tumor cells is partly believed
to be caused by the failure of immune control. Tumor
cells evade the surveillance of the host immune system
through various mechanisms, such as downregulating
target antigens or creating a TME with immunosup-
pressive characteristics [83, 84]. Tumor immunotherapy
enhances or rebuilds the immune system to monitor, rec-
ognize and destroy tumor cells, thereby eventually pro-
longing the survival of patients [85, 86]. Inmunotherapy
has significantly prolonged survival and improved quality
of life for many cancer patients in whom chemotherapy
or radiotherapy regimens have failed [87, 88]. However,
with the increase in the clinical application of immuno-
therapy, researchers have gradually found that the thera-
peutic effect of immunotherapy on tumor patients varies
among individuals. Stool samples from clinical patients
who were subjected to sequencing analysis revealed
that the features of the gut microbiome and treatment
effect exhibited a significant correlation (Table 1), imply-
ing that the gut microbiome has a significant impact on
tumor therapy. There may be an internal mechanism that
is involved in the relationship between the individual
diversity of the gut microbiota and the heterogeneity of
antitumor immunotherapy outcomes. However, current
mechanistic research is mainly focused on the preclinical
phase, and the implementation of research findings into
clinical application has remained very limited.

Immune checkpoint blockade (ICB)

Tumors, as collections of cancerous cells, can be recog-
nized and eliminated by the immune system. However,
tumor cells secrete inhibitors that recognize and bind to
adaptive immune cell surface receptors and inhibit their
immune response to tumor cells [121]. ICBs that have
been approved by the U.S. Food and Drug Administra-
tion (FDA) target two classes of T-cell receptors (TCRs),
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including CTLA-4 and programmed cell death protein
1 (PD-1) and its ligand (PD-L1). Inhibitory antibod-
ies targeting CTLA-4 [122], PD-1 [123], or PD-L1 [124]
can induce antitumor effects in vivo. In addition, many
antibodies and small molecule drugs targeting other
immunomodulators, including LAG3, TIGIT, TIMS3,
CD39, CD47 and CD?73, are in the process of clinical
investigation.

Although ICB therapy improves outcomes for patients
with many cancer types, only a portion of patients expe-
rience a stable benefit. Even among melanoma patients
with the highest response rate to ICB, more than 60-70%
of patients do not respond positively to anti-PD-1 anti-
body therapy; 20-30% of these patients eventually show
tumor recurrence and progression [125, 126]. Therefore,
there is an urgent need to identify new immunotherapy
strategies to improve the immunotherapy response.

There is substantial clinical evidence that the baseline
composition of a patient’s gut microbiome is associ-
ated with the antitumor efficacy of ICB therapy [17, 81]
(Table 1). Notably, the microbes that are favorable and
unfavorable to the treatment outcome in different study
populations have varied greatly overall, but they may
share some important metabolic pathways that allow
them to be distinguished. Based on these clinical stud-
ies, stool samples from patients with different treatment
outcomes were transferred to GF or antibiotic-treated
tumor model mice, and the differences in ICB treat-
ment outcomes were paralleled in these mice [18, 72,
127]. Sequencing analysis of fecal samples has often been
used to reveal the signature of the bacteria in responding
patients, and the signature of beneficial bacteria identi-
fied through culture isolation or directly through the use
of commercial strain supplements can further confirm
the role of key gut microbes in promoting ICB treatment
[18, 128]. More strikingly, intestinal bacteria and fungi
have opposite effects on tumor therapy, with commen-
sal bacteria essential for an effective antitumor immune
response but symbiotic fungi modulating the immu-
nosuppressive microenvironment after treatment. The
opposite effect is likely due mainly to fungi, since the size
of fungal populations is significantly increased in the gut
after bacterial deletion [129]. Although the mechanism
by which the microbiome affects tumor therapy is not
completely understood, fecal microbiota transplantation
(FMT) can be regarded as a therapeutic strategy. How-
ever, the future research objective is still to use more spe-
cific and direct methods to regulate the microbiota based
on a clear understanding of the mechanism of action.

To date, different studies have found that the key bacte-
rial signatures involved in the ICB response are different,
and the mechanisms of action vary as well (Fig. 2). Based
on how bacteria exhibit a synergistic antitumor effect



Page 7 of 31

(2023) 13:188

Guo et al. Cell & Bioscience

"dds apaspd
[£01] -2020UIWINY DIIYAIUDNW DISUDULYY qvu 1-ddp gdl 8 ODH
11do2 bjj210/3ld ‘winbuoy
[901] wnu2120qopyig ‘siuipannd sadusiyy qvw [-ddo gDl A3 J1OSN
sno
[sol] $9p1012100qDID ‘Djj2421NS ‘DjIydojlg  -2020ydONUAS WNIpLISO|D 'SNjjI2DqoIDT qyw [-gdo gDl /1 J1OSN
[0l DjIydiupNW DISUDULIYYY qQyw |-ado gD 1z (DDYW) BUWIOUIDIED ||93 [BUSI DIIBISPISIN
3DaJDIPIIISOD ‘2Da2DLIIIDqIbOYY
'2Da2D220201d2.1150)d3d 'sapioia1ong
[coll 'aDaD|[2UNIY ‘DIIYAIUDNW DISUDULIYYY qvw [-ddp gDl Ll J1OSN
SIUILIOYIUIISAIU] DJj3ISaUIDg UoleUIqWIOD gD ‘YWl
[col] 'aD32D22020UIUINY ‘WNLBI2DGIDIADY  H-Y 11D ‘QyW | T-QdP ‘QyW |-ado gD o€l eLIOUB|2W DI1RISEIDN
nzyusnpid
(ot Winlia3o0ql|pI3p4 'subiauabidiuiio) paioq Adesayyowaypounuiu| LS ewoyduwA| upbpoH-uou ||93-g
[001] 9DIID|joudNIY $9|DIpLISOID Sgol 123 190ued HunT
[66] Jasiibig winia120q0o121pj02sbYd qQvw |1-ddp ‘qyw 1-ddo gDl 69 J1OSN
[86] $n230301daA1S qvw [-ddp gDl SL J1OSN
[£6] 110JAd 12120qO2ljaH qvw [-ddp -gDl 88 J1OSN
pauIquIod
[96] sljbunisolul sapioa1opg gyWw |-adp pue qyul ¢~y 1150 0| Ll BWOUEBIDIN
‘DISUDULIYYY 'SUDIND SN2202013)U7
[s6] “ds winyjuidsozy \11punaiy 121200110 (Qewn|onlu) Gyw |-ado gD 8 ODH paouenpy
pInIy213 sunyd4y “ds
DJj21021|NUDIS) ‘DIIAAID DJJUO)JI3/ “IUOP
-10b $N230203d341S ‘WNI2ab) SN3302042)U7F
'SupINW sN22020}da.3S 113124 SNjj120qoIdDT Sn> 1DV YUM pauiquiod Jo ‘(suigeidaded Jo
¥6] {1j02 bIY2LaYDST ‘SauisOWNaUd J31SIDIJ  -2020431U7 'SNjjI2DqOIdDT (WNl3120qopYIg une|dijexo) auoje Adessylowayd 6€ DI
[€6] D1I2120q0a10IdDWIWIDY Qv | 7-ddo :qyw |-ddo gDI 0€ J1OSN
LY LWYD
-WiN3120q a0320Y2110J3dIsAi7 'snpljpd sno
-2000UIUWINY ‘/665d-3]jlasiopy “ds sadnsi)y
[c6] EIEBIENIITEY '6/INYD-WNL3120q 20200J1dsOUYDD] qyw [-ado gDl 59 sia0ued Aleljiqoleday padueApy
[16] winliappqosn gyw |-ado gD of J90Ued bunT
[06] 3Da2D1I2100q0IAIUT DISUDULIDYYY qQyWw 1 7-QdP ‘gQyWw -y 1100 :gD| Ll (DDH) ewouJed Jejnjjad03eday
winlia} qyw
[68] -2DQ}|D33D4 DISUDWLYY 'SN22020UjWNY -y 1P ‘qQyW | 1-ddP ‘qyw 1-ddP gDl 59 J1OSN
sjuaned
papnpul
EERITEYETEN SSW0INO [eDIUl]D d|qeIOARJUN S9WO0DINO |eDIUI|D d|qRIOAR juawiean Adessyrounwiw| Jo 1aquinN adA) Jowny

Adelayiounuwiwil Uo $10349 aWolqoidiw INb Jo Apnis [eaul) L djqeL



Page 8 of 31

(2023) 13:188

Guo et al. Cell & Bioscience

Djjauoyjion
[ozl] 6 DJ|210/31d 90a0DJIdSOUYDIDT (WNIPLISO[POUYIDT] aQyw [-ado gDl % JDH
SNO -9tV “ds snooodouiuiny ‘wini
-212DQq 3D32D22020UjUINY ‘UWINPIIISO20)
[6L1] -bjadisAi3 ‘winaqo binpjg ‘piajxam binojg ayuw [-gdo gDl /S (DdN) ewouipied [esbukieydoseN
(THN) ewoyduiA|
sn upBPOH-UOU (1Y) elwayna| dnsejoyd
8Ll -2020UJWNY 'DIUNQG3ISOY ‘WIN3IDqIIDI3D 1-4YD 8/ -WIA| 91n28 (AN) BuwOoRAW 3|dinw
[z1u 110JAd 12120qO2ljaH gvw 1-adp gDl Ll 195U d1I5eH pIdURAPY
pauIquIod
911] 2D20DPI0I21ODG 2D32022000UWNY gy [-gdo pue gy -y 1100 :gD| 817 BWIOURDIN
SU3IDDJOID (DdyDw) Jaoued
St DJjasullj0D “DIIYdIUIDNW DISUDULIYYY SNLDAIDS SN220301d211S SPIWEIN|BZUD YUM PUIGUIOD gD € 91e150.d 1URISISDI 91RIISED DI1RISRISIN
L] snasodouIwny avw |-ddp -gdl Se DDH
[c11] DJ24214DS ‘DIYD1IaYDST ‘WinIa1opbqopllg Adelaylowayd yum pauiquiod gd| 4 D1DSN
DL21ODQ PIdD D11De|
[cLt] ‘WiNoLAING WNIpLIsSO|D ‘Wnu2120qopylg gvw |-ddp gDl ¥6¢ J1OSN
‘dds apasp230201da1S
rdds apadpiidsouyop] ‘apad02030UILINY
[l ‘apaopuidsouydp7 ‘winjAyd pLs1dpqoOUdY gyw |-ado gD 6 BWIOUR[DIN
S3l|luley [eLIR1DE] |X A|lWeS S3/DIPLISO)D
'9Da2D1IRIODQOUIDY) 9DaID1IIODGOIIUT
oLt 19D3202202013)U7 ‘9DAIDISUDULINYY ayw |-gdp gDl w swisejdoau doeioy |
2paopIIds
[601] -0UYIDT '2D32D22020UIUWINY 'DJ|210ASId qQyw | 7-adp ‘gyw |-gdp gDl v/ J9DUBD [BUI1SSIUI0IISED)
WiNIaby SN2202012]U7 ‘SUIDDY
[z/] -013D DJjasuljjoD) ‘Winbuoj winpaxpqopyig ayw [-ado:gd| W eUIOUR|SW D[1BISEISIN
81] Ajlwie} apadpi0000UIWINY avyuw [-gdo gDl 4N BLIOUR[DIN
Winkia1opq apacpiIdsouyoD]
p1oNpoid pinp|g ‘snapbub Snsouibup sn220203daJis 'sjuINbups snd
SN22020UIWNY ‘SISUSIJISSOW SaPI0IAIIDG  -20201dRJ1S ‘DaI02I31S D|ja10Ald ‘SNidDINd uoleUIqUIOD gD ‘ayWl
[801] !1210p $3PI0I312Dg 'SNIDAO S3PI0I21ODG  SN220204d0)) 1iZ)UsNDId WnaduQIPIaDS Y 1LIP ‘Qyw | 1-ddP ‘qyw |-adp gDl Yad BWIOURDIN
sjuaned
papnpul
S9DUIDYY S3WO0D1INO |eJ1Ul]d 3|qeIOARIUN S3WO02INO0 [edjul]d d|gelone juawieasy Adessyrounww| Jo JaquinN ad£} jown}

(panunUOd) | 3jqey



Guo et al. Cell & Bioscience (2023) 13:188

Page 9 of 31

TMPQV'..'./.

Choline
e —

Akkermansia

. TypelIFN 1

ER }——V \&
PD-L1
Tumor cell pyroptosis

STING agonists/c-
di-AMP
Activated

CD8* T

PD-1"im-3

Monocyte .° .
@< /

High
fibre
diet

muciniphila

= o —

Bifidobacterium
pseudolongum

Inosine

——

Bifidobacterium Peptidoglycan
bifidum
-

_ .

-
Butyrate

Streptococcus 3
o B-Galactosida:

Type | IFN
NK cell

—
0’ .

oPD-1

IFNy

- .

CpG \IL-12R\ ™

*.IL—IZ 9 ]
Ty1 differentiation

thermophilus

——

TLR2

Bifidobacterium |™™® _____~
Lactobacillus 1 ®= Celkio

®

. \prtidoglycan *"

o PD-Ll\‘

A

Fig. 2 Mechanism through which some gut microbiota-derived metabolites influence antitumor therapy. These metabolites, including TMAO
from Clostridiales, c-di-AMP from Akkermansia, inosine from Bifidobacterium pseudolongum, peptidoglycan from Bifidobacterium bifidum,
B-galactosidase from Streptococcus thermophilus and butyrate, are representative metabolites that have been reported in the last two years. They
can spread to the TME through the circulatory system or interact with mutated enterocytes directly and mediate antitumor therapy by different
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with the treatment, the mode of action can be divided as
follows: (a) exopolysaccharides [71, 130] or surface pro-
teins [131] in the structure of bacteria themselves can be
used as pathogen-associated molecular patterns (PAMPs)
to directly stimulate intestinal immune cells and induce
innate or adaptive immune responses; (b) metabolites
produced by bacteria, such as SCFAs [109, 132, 133], ino-
sine [134], peptidoglycan [127], trimethylamine N-oxide
(TMAO) [135, 136], neurotransmitters (including dopa-
mine, norepinephrine, serotonin, or y-aminobutyric acid)
[137], ferrichrome [138], B-galactosidase [139], etc., enter
the circulatory system through the portal vein to stimu-
late the TME, changing the immune state and revers-
ing tumor immune tolerance and thus promoting the

therapeutic effect of ICBs (Table 2). On this basis, the
gut metabolomic profile was characterized in 11 non-
small cell lung cancer (NSCLC) patients treated with
nivolumab anti-PD-1 therapy, which showed that 2-pen-
tanone and tridecane were significantly associated with
early progression, while SCFAs, lysine and nicotinic acid
were significantly associated with long-term beneficial
effects [140]. Moreover, other studies have found that
regulating gut microbial composition and supplement-
ing beneficial bacteria could alleviate immune-related
adverse reactions (irAEs) induced by monoclonal anti-
body therapy targeting CTLA-4 or PD-1 [141, 142],
which reiterated the importance of the relationship
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between the gut microbiome and immunotherapy. Based
on these findings, strategies that regulate bacterial popu-
lations in the host are reasonable and applicable.

Given the diversity of results, increasing attention is
being paid to integrating data from multiple cohorts or to
further expanding the cohorts so that the optimal com-
bination of key microbes that further improve the clini-
cal application prospects of strategies targeting the gut
microbiota for tumor immunotherapy can be identified.

Adoptive T-cell therapy (ACT)

The therapeutic effect of ICB is dependent on the pres-
ence of preexisting tumor-specific immune cells [149], so
its clearance effect is limited in certain tumors with low
immunogenicity. Due to this phenomenon, artificial sup-
plementation of tumor-specific immune cells may have a
better therapeutic effect. ACT uses autoimmune T cells
such as TILs or cytotoxic T lymphocytes (CTLs) to com-
bat cancer. In 1985, transfusions of autologous mature
lymphocytes were first reported to produce effective can-
cer regression [150]. The ACT treatment process typi-
cally consists of three steps: (1) isolating and extracting T
cells from patient tumor tissues or peripheral blood ves-
sels; (2) culturing and enriching for lymphocytes in vitro;
and (3) reinjecting the amplified specific T cells into the
patient [151, 152]. With the development of basic biol-
ogy and immunology, research on the characteristics of
immune cells has become increasingly comprehensive.
Many studies have shown that T cells produce more spe-
cific TCRs or chimeric antigen receptors (CARs) in vitro
through gene modification, which could produce a
stronger antitumor immune response after infusion into
patients [153-155]. Unlike conventional TCRs, CARs
recognize antigens independent of major histocompat-
ibility complex (MHC) antigen presentation, avoiding the
restriction of MHC molecules and solving the problem of
tumor immune escape caused by the inhibition of MHC
molecule expression [156, 157]. Recently, ACT, espe-
cially CAR-T-cell therapy, has shown excellent efficacy
in patients with hematological malignancies and meta-
static melanoma [158, 159]. This rapid development of
cell therapy brings more hope and possibilities for a cure
to patients, but the rate of response to cell therapy also
needs to be further improved.

Given the widely accepted role of the gut microbi-
ome in ICB therapy, its impact on CAR-T-cell efficacy
was supported by indirect evidence [19, 160, 161] and
confirmed in a retrospective cohort study [162]. The
study (n=228) found that antibiotic use during the first
4 weeks of treatment was associated with poorer sur-
vival and increased neurotoxicity in B-cell lymphoma
and leukemia patients receiving CD19-targeted CAR-T
therapy. 16S rRNA and metagenomic sequencing of
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feces showed that Ruminococcus, Bacteroides and Fae-
calibacterium were related to the efficacy of CD19
CAR-T treatment. Bacterial metabolic pathways,
such as peptidoglycan synthesis and pentose phos-
phate metabolism, may be biomarkers of CD19 CAR-
T-cell efficacy. Moreover, a clinical trial revealed that
the irAEs produced in response to CAR-T, especially
cytokine release syndrome, are also modulated by the
gut microbiome in patients with hematologic malig-
nancies, and similarly, Faecalibacterium and Rumino-
coccus are enriched in patients who achieved complete
remission [118]. The dominant bacteria and detailed
mechanism need further confirmation and exploration.
Future application of this mechanism would uniquely
enable the stimulation or activation of therapeutic T
cells by specific metabolites produced by microbes
in vitro before their transplantation into patients.

The relationship between the gut microbiome
and ACT response in solid tumors has not yet been
reported. However, gut microbes can stimulate tumor
cells to secrete a variety of chemokines in patients with
colorectal cancer, thus recruiting more T cells into the
TME and improving the prognosis of patients. These
results revealed the role of the gut commensal micro-
biota in controlling the extent of tumor invasion by
immune cells [19]. In another analysis of plasma sam-
ples from colorectal cancer patients treated with ACT
in combination with chemotherapy, the abundance of
Bifidobacterium, Lactobacillus and Enterococcus in the
blood of responders was higher than that in nonre-
sponders [94]. Therefore, using the blood microbiome
to predict the effect of tumor immunotherapy may be a
more convenient and effective method. In animal mod-
els, there were significant differences in the effective-
ness of ACT against tumors in mice with similar genes
but different origins. Fecal microbiota sequencing
showed significant differences in the fecal microbiota
composition of mice with different origins, and vanco-
mycin exposure could enhance the therapeutic effect of
ACT. This effect was demonstrated by increasing sys-
temic CD8a* DC and IL-12 levels and was associated
with more efficient expansion of adoptive antitumor T
cells in mice [160]. This study confirmed that it is possi-
ble to improve the therapeutic effect of ACT by modu-
lating the gut microbiome composition and promoting
the tumor immune response.

Currently, studies on the impact of gut microbes
on CAR-T therapy are still in the stage of discovery
and validation, but due to the considerable role of the
gut microbiome in antitumor immunity, it is believed
that there will be increasing evidence to support the
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effects of this relationship and the specific mechanisms
involved.

Association between the gut microbiome

and immunotherapy-related toxicity

Although immunotherapy has achieved remarkable
results in the clinical application of tumor patients, there
are still a considerable number of cases with toxic reac-
tions, especially irAEs.

In the ICB therapy setting, irAEs correlate with the
type of ICB used, such as anti-CTLA4 therapy, which
tends to induce colitis and pituitary inflammation, and
anti-PD-1 therapy, which tends to induce thyroid dys-
function and pneumonia. The patient baseline gut
microbiome has been shown to correlate with the risk of
irAEs. In a study of 77 patients with advanced melanoma
treated with a combination of CTLA-4 and PD-1 block-
ing, analysis of blood, tumor, and gut microbes showed
that irAEs were not associated with the o diversity of
the microbiome but were associated with the baseline
abundance of specific bacterial taxa, including Bacte-
roides intestinalis and Intestinibacter bartlettii. The abun-
dance of Bacteroides was positively correlated with irAEs
occurrence and IL-1f levels in the intestinal mucosa,
and this conclusion was verified in mouse models [96].
In another study of patients with metastatic melanoma
treated with a CTLA-4 and PD-1 blocking combination,
Bacteroides dorei and B. vulgatus were found to be asso-
ciated with irAEs in a reversed pattern [163]. In a study
of 26 patients with metastatic melanoma treated with
anti-CTLA-4 monotherapy, the author reported that the
baseline abundance of Faecalibacterium and other Fir-
micutes were associated with both treatment efficiency
and irAEs, and Bacteroidetes were associated with lower
treatment response and lower irAEs [164].

The differences between the two studies may be due to
differences in treatment methods or may be the result of
functional redundancy between different microbes. In
addition, there may be geography-related differences in
the microbial communities associated with ICB efficacy
and irAEs. Simpson et al. compared fecal microbes of
103 patients with metastatic melanoma from Australia
and the Netherlands treated with neoadjuvant ICBs and
found that the Ruminococcaceae family taxa and AKK
were associated with lower treatment effectiveness and
more severe irAEs.

In addition, C-reactive protein in peripheral blood can
be used as a biomarker for severe irAEs [116]. In the con-
text of immune agonist antibody (IAA) therapy, such as
anti-CD40 and anti-CD137, the presence of gut micro-
biota is correlated with therapeutic toxic reactions such
as cytokine release syndrome (CRS), liver damage and
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colitis. The incidence of toxic reactions was significantly
reduced in GF mice or mice treated with antibiotics,
while there was no significant effect on the therapeu-
tic efficiency [165]. Although this study did not investi-
gate the function of specific bacterial taxa in depth, the
comparison of IAA with ICBs with different effects has
implications for intestinal microbial immunotherapy of
tumors.

CAR-mediated toxicities are still a problem in CAR-T
therapy, including CRS or immune effector cell-associ-
ated neurotoxicity. Smith and colleagues reported that
antibiotic use was associated with increased neurotox-
icity in B-cell lymphoma and leukemia patients treated
with CD19-targeted CAR-T therapy [162]. These results
not only confirmed the relationship between the intes-
tinal microbiota and the effect and side effects of tumor
immunotherapy but also provided a strategic basis for
improving the effect of immunotherapy by regulating the
intestinal microbiota in different ways.

Modulation of the gut microbiome to facilitate
tumor immunotherapy

The diversity and composition of the gut microbiota are
associated with the efficacy of various cancer treatment
strategies. In addition to demonstrating the correlation
between the two, most studies in this area have demon-
strated that the gut microbiota is a therapeutic target,
and its modulation is a tool to improve the prospects of
clinical application [166]. Large-scale population stud-
ies have shown that the diversity of commensal micro-
bial communities in different populations or individuals
is largely shaped by environmental factors [167]. With a
focus on achieving high clinical compliance or enabling
function in daily life, several strategies have been stud-
ied to regulate the composition of the gut microbiome
to promote immune-related antitumor therapy. The next
section reviews the literature related to these studies
published in recent years.

Fecal microbiota transplantation (FMT)

Despite the controversy over its mechanism and safety,
FMT has been widely used in the treatment of recurrent
Clostridium difficile infection (CDI) in the past decade
and has achieved good results [168], which also laid the
foundation for the therapeutic application of FMT in the
treatment of other diseases. Clinical studies on antitumor
immunotherapy using the FMT strategy are in the initial
stage, and many results have been achieved mainly in
animal models [169].

FMT is performed on the premise that the degree
of host response to immunotherapy can be transmit-
ted between different individuals through fecal com-
ponents. Numerous studies have found that GF mice



Guo et al. Cell & Bioscience (2023) 13:188

transplanted with stool from patients who had a clini-
cally significant response to ICB treatment are more
likely to develop an antitumor immune response to ICB
treatment than control mice transplanted with stool
from nonresponders. Specifically, tumor progression is
slowed, and overall survival is significantly prolonged
[18, 72, 170]. These results suggest that the therapeutic
outcome of ICB may be influenced by regulating the gut
microbiota of tumor patients. More recently, Baruch
et al. [128] and Davar et al. [171] verified the efficacy
of FMT in anti-PD-1 immunotherapy in patients with
metastatic melanoma for the first time in a clinical trial.
Two separate studies each observed evidence of clinical
benefit in some patients who received FMT treatment.
Based on the benefits of FMT in anti-PD-1 therapy in a
mouse model [72], Baruch et al. designed a phase I clin-
ical trial (NCT03353402) in which stool donors, includ-
ing two melanoma patients who received anti-PD-1
antibody therapy and achieved complete remission,
were recruited to evaluate the safety and feasibility of
FMT combined with anti-PD-1 antibody immuno-
therapy in 10 patients with refractory metastatic mela-
noma. Clinical response results were observed in three
patients, including two partial responses and one com-
plete response. Moreover, FMT treatment was associ-
ated with favorable changes in immune cell infiltration
and gene expression profiles in the intestinal lamina
propria and TME. In the clinical trial (NCT03341143)
conducted by Davar et al., 6 of the 15 patients enrolled
in the trial exhibited clinical benefits, including rapid
and lasting changes in their gut microbiome and
increased abundance of some previously reported gut
microbial taxa associated with clinical response, such
as Bifidobacterium. longum, Collinsella aerofaciens, and
E. faecium [18, 72]. In the TME, increased activation
of CD8* T cells and a decreased proportion of mye-
loid cells expressing IL-8 were observed. In addition,
patients treated with FMT had different proteomic and
metabolomic characteristics. These two studies also
became the first clinical proof-of-concept studies show-
ing that FMT overcomes ICB resistance [172], which
greatly expanded the prospects of the clinical applica-
tion of FMT in antitumor immunotherapy strategies. In
addition, there are many other ongoing or completed
clinical trials [15, 173-176], which provide strong evi-
dence for the safety and efficacy of FMT regulation of
the gut microbiome in the treatment of tumors.
Nevertheless, the compatibility of the donor feces and
the recipient intestinal microenvironment during FMT
remains to be further ascertained. In addition, there
are many nontarget components of donor feces that
are transplanted into the recipient’s body, which have
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unknown effects. Thus, FMT remains a temporary, out-
come-oriented solution until the mechanism of action
and criteria for use are fully understood. More in-depth
mechanistic exploration and the identification of more
refined treatment strategies are the main directions of
future research.

Probiotics

The concept of probiotics was first proposed by Metch-
nikoff [177] and is defined by the Food and Agriculture
Organization of the United Nations as “living microor-
ganisms beneficial to the host when injected in sufficient
quantities” [178]. However, probiotics that are considered
dietary supplements do not need to go through strict
review by drug regulatory authorities before being mar-
keted [179], which has resulted in the absence of formu-
lation standards and quality control, exaggerated efficacy
and lack of scientific experimental data regarding probi-
otics [180]. Therefore, while probiotics have been recog-
nized academically for their health benefits, they are still
misunderstood by many people. We need to continue
to explore the effect and mechanism of probiotics using
advanced science and revise the general understanding of
probiotic therapy.

Due to the impact of probiotic supplementation on the
composition of the gut microbiota, it is rational that the
application of probiotics could enhance the host immune
response [181, 182], as well as the efficiency of anti-
tumor therapy (Table 3). Lee Se-Hoon et al. found that
B. bifidum was significantly enriched among the fecal
microbes in NSCLC treatment responders in a study
of patients treated with different methods, and it was
found in an animal model that supplementation with B.
bif K57 combined with oxaliplatin or anti-PD-1 antibody
significantly enhanced the antitumor effect. Mechanis-
tic studies showed that the probiotic strain B. bif K57
could significantly enhance the immune response in the
TME and increase the activation of CD4t and CD8" T
cells, as well as the secretion of the cytokines IFN-y and
IL-2. These effects may be achieved through the abil-
ity of the B. bif K57 strain to synthesize peptidoglycan
[127]. Mager Lukas et al. found that inosine produced
by Bifidobacterium pseudolongum activates the T-cell-
specific A,,R signaling pathway and stimulates strong
antitumor immunity in the tumor and spleen, thereby
promoting the efficacy of anti-CTLA-4 antibodies in
mouse colon cancer [134]. In addition to supplemen-
tation with Bifidobacterium, preclinical studies have
found that supplementation with other probiotics, such
as Lactobacillus [138, 147, 183] or Streptococcus thermo-
Pphilus [139], could significantly improve tumor immuno-
therapy. In addition, AKK is another species of probiotic
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that has been discovered and widely accepted in recent
years with the development of microbial sequencing
technology [184, 185]. AKK, which can induce an adap-
tive immune response in follicular helper T cells (Tgy)
in Peyer’s patches to maintain intestinal homeostasis,
has been reported [78]. Model mice orally supplemented
with AKK combined with anti-PD-1 antibody [17] or
cisplatin [186] showed apparently improved therapeutic
outcomes. Shi et al’s study revealed that the outer mem-
brane protein of AKK, Amuc, could recruit more tumor-
specific cytotoxic T cells in the TME by activating TLR2
signaling and reducing the levels of immunosuppressed
Tregs, thus producing a considerable antitumor effect
when IL-2 was combined as an adjuvant [131]. These
results suggest that beneficial probiotics for health have
good prospects for use in research on antitumor effects.
In addition to the use of single probiotic strains, it has
been suggested that a mixture of multiple strains may be
needed to influence the complex microecosystem of the
gut. Tanoue et al. isolated 11 strains from the feces of vol-
unteers and mixed them, which could significantly induce
the accumulation of IFNy" CD8* T cells in the intestinal
tract of mice, and synergistic ICB produced a significant
therapeutic effect in a mouse tumor model; the induction
effect was optimal only when all 11 strains were present
[187]. These results implied that the interaction of the
gut microbiome with the immune system and tumor may
involve more complex systemic processes.

The considerable effect of oral probiotics on the anti-
tumor immune response in mice provides a basis for the
clinical study of probiotics in the tumor population. In
a recent phase I trial (NCT03829111), 29 patients with
mRCC were treated for the first time with nivolumab
in combination with ipilimumab, and some were sup-
plemented with CBM588, which contains Clostridium
butyricum. Probiotic CBM588 significantly prolonged
PES in patients with mRCC without additional toxicity
and improved response rates to combined ICB therapy
[188]. Moreover, the administration of CBM588 to reg-
ulate gut microbiota improved the efficacy of ICB treat-
ment in NSCLC cancer patients receiving PPIs [189].
Another analysis of 77 patients with advanced mela-
noma revealed a positive correlation between the toxic-
ity of anti-PD-1 and anti-CTLA-4 antibodies and the
presence of Bacteroides intestinalis in the feces of the
patients, suggesting that the bacteria could be used as
a target for reducing the side effects of ICB treatment
[96]. At present, clinical studies on the use of probiotics
in the treatment of cancer have been very rare, and the
results of only individual clinical trials are not sufficient
for cross-validation.

Taken together, these data indicate the potential advan-
tages of probiotics for cancer treatment. However, it
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is still necessary to improve the quality control of com-
mercial probiotics to confirm their antitumor effect and
optimize the strategy for colonization by probiotics. In
addition, the specific mechanism of antitumor immunity
induced by probiotics needs to be further elucidated.

Diet and prebiotics

The microbes colonizing the gut can decompose and
metabolize physical components that cannot be digested
by the host, and the released nutrients can be absorbed
by the body [200, 201]. Conversely, diet also affects the
gut microbiome and metabolome [202, 203] (Table 4).
This interaction has laid a theoretical foundation for the
regulation of the bacterial consortium through specific
metabolic pathways by dietary formulas.

Geographically, different populations exhibit different
dietary habits, which in turn act on the gut microbiota.
Accordingly, a prospective trial profiled baseline gut
microbiota signatures and dietary patterns among 103
patients from Australia and the Netherlands treated with
ICBs for melanoma and performed an integrated analy-
sis with data from 115 patients with melanoma treated
with ICBs in the United States [116]. High dietary fiber
intake in individuals from areas such as Australia and
the United States may lead to greater clinical benefit for
those with Bacteroidaceae-dominated microbiomes than
in individuals from the Netherlands, who already have
fiber-influenced microbiomes. Therefore, diet customi-
zation, especially involving dietary fiber, represents a
potential strategy for improving tumor therapy. Dietary
fiber components are metabolized to produce SCFAs
[204, 205], which have been widely reported in the treat-
ment of metabolic diseases [206, 207] and intestinal
inflammation [200, 204]. In the last decade, the impact of
SCFAs on tumor immunotherapy has also been reported
(Table 4). He et al. found that butyrate could promote the
therapeutic effect of the immunogenicity drugs oxalipl-
atin and anti-PD-1 antibody by directly activating antitu-
mor CD8"' T cells [133]. However, another study found
that a higher level of SCFAs in the peripheral blood may
weaken the antitumor immune response induced by anti-
CTLA-4 antibodies [208], suggesting that the effect of the
metabolites is different in tissues. Therefore, the use of
dietary fiber metabolites to regulate antitumor immunity
requires more refined research.

Prebiotics are more specific than diet and comprise
specific chemicals, which mainly include oligosaccha-
rides and polysaccharides, that promote the growth of
specific microbes [209, 210]. Prebiotic usage to promote
antitumor immunotherapy has attracted increasing
attention in recent years [211, 212]. Huang et al. found
that oral administration of ginseng polysaccharide in
mice could promote the antitumor effect of ICB, and its
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internal mechanism was that the supplemented prebiotic
could improve the TME and systemic CD8" T-cell func-
tion by reshaping gut microbial composition and trypto-
phan metabolism and inhibiting the effect of Treg cells,
leading to the enhancement of the antitumor effect of the
anti-PD-1 antibody [213]. In another study using an engi-
neering approach to regulate beneficial microbes in the
gut, Han Kai et al. prepared inulin gel that could be orally
administered and released site-specifically in the colon
to regulate microbial composition in situ, promote SCFA
metabolism, induce a systemic T-cell memory response,
and enhance the antitumor activity of anti-PD-1 antibody
[214]. Furthermore, a recent study showed that a natu-
ral polyphenol from the berry of Myrciaria dubia could
reverse ICB resistance by altering the intestinal micro-
biome composition [215]. These extracted or modified,
one-component natural products can achieve a finer
regulation of gut microbes than dietary supplements to a
certain extent and offer more possibilities for tumor ther-
apy by targeting the gut microbial structure.

Based on preclinical mouse models, a recently pub-
lished clinical observational study of 128 melanoma
patients treated with ICB found that 37 patients who
met the 20 g/day dietary fiber intake threshold had sig-
nificantly longer PFS than those who did not. Interest-
ingly, the anti-PD-1 antibody showed better therapeutic
efficacy in patients with adequate dietary fiber intake and
no probiotic supplementation. To investigate the causal
relationship between diet and treatment outcome, the
authors established a mouse tumor model and found
that a lower-fiber diet or supplementation with probi-
otics consisting mainly of B. longum and Lactobacillus
rhamnosus GG weakened the antitumor effect of the
anti-PD-1 antibody [216]. This result, particularly the
contrary effect of probiotics, reemphasized the high com-
plexity and specificity of targeting gut microbes to modu-
late the therapeutic effects of tumor therapy. Fortunately,
gut microbes do therefore have potential as targets for
antitumor immunotherapy, but the characteristics and
mechanisms of action of gut microbes may be more com-
plex than expected.

Antibiotics and other drugs

The purpose of using antibiotics for tumor patients is to
prevent infections by various pathogenic microorgan-
isms, which would inevitably change the composition
of the gut microbiota. Therefore, a mass of preclinical
studies and clinical cohort retrospective studies have
reported that the use of antibiotics weakens the effi-
cacy of tumor immunotherapy, especially ICB therapy
(Table 5) [226]. Routy et al. evaluated the effect of anti-
biotics against PD-1 antibody therapy in 249 patients
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with advanced NSCLC, RCC, or urothelial carcinoma
and found that PFS and OS were significantly shorter
in patients who received antibiotics than in those who
did not [17]. Chalabi et al. retrospectively analyzed
two previous clinical trials investigating patients with
metastatic NSCLC (NCTO01903993; NCT02008227)
and found that both antibiotics and another microbi-
ome altering proton pump inhibitors (PPIs) affected
atezolizumab treatment, shortening PFS and OS [227].
These results indicate that the gut microbiome plays an
essential role in ICB treatment. Another piece of evi-
dence supporting this idea is that the therapeutic effect
of ICB may be affected by the spectrum of antibiotic
action. Specifically, patients receiving broad-spectrum
antibiotics have a shorter survival than those receiving
narrow-spectrum antibiotics [228]. Interestingly, the
effect of antibiotics on tumor immunotherapy is also
related to the period of patient exposure to antibiotics;
antibiotics may have beneficial effects before or 30 days
after ICB treatment [229]. These studies showed that
antibiotic usage during the ICB treatment period could
weaken the tumor treatment effect, but antibiotics are
still irreplaceable in preventing infection and postop-
erative complications after tumor surgical treatment
[230, 231]. Hence, the design of an antibiotic treatment
plan according to the actual situation of patients, such
as an approach determined based on sequencing analy-
sis of the gut microbiome before antibiotic treatment
and customized antibiotic formulation, may reduce the
disturbances mediated by broad-spectrum antibiot-
ics in the gut microbiota and improve the therapeutic
effect.

Nevertheless, there does not always seem to be a
positive correlation between bacterial burden and
treatment outcomes. In a retrospective review of 57
patients with MSI-H/dMMR mCRC receiving anti-
PD-1 mAb, there was no association of lower response
rates or survival in those patients exposed to antibiotics
[232]. Gut microbes can relocate into surrounding tis-
sues and influence tumor progression. Broad-spectrum
antibiotic depletion of the gut microbiome prevented
invasive PDAC and enhanced the antitumor immune
response [32]. These results showed that the role of
the gut microbiome in tumor therapy was contrary to
previous results, suggesting that an excessive intesti-
nal microbe load or a high concentration of microor-
ganisms in tumors may have adverse effects on tumor
therapy. Etiologically, the studies that observed nega-
tive effects of the microbiome on therapy outcomes
have involved studies of pancreatic cancer [233, 234],
and one possible explanation is that the pancreas and
gut are anatomically connected through the pancreatic
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duct [235]. The continuity of the two may lead to a
higher microbial load in the pancreas than in other tis-
sues, which is related to the occurrence and immuno-
suppression of pancreatic cancer. These results suggest
that the different benefits of the gut microbiome on dif-
ferent tumor types may be related to the distribution of
the microbiome in different organs.

Future prospects: opportunity and challenge
coexist

With the gradual increase in attention towards the
important role of the gut microbiome in human health,
research on the formation, development, diagnosis and
treatment of tumors is steadily advancing to a new stage.
Due to the widespread application of NGS, metabo-
lomics, proteomics and other multiomics techniques,
researchers have gradually gained a clearer understand-
ing of the colonization, transfer and recolonization of
microbes in various tissues and organs of the body and
identified the close relationship of function and causation
between health and disease states and the colonization of
microbes in tissues, including those in the TME. Finally,
the concept of the “polymorphic microbiome” has been
regarded as a new hallmark of cancer [21].

Nevertheless, some substantial problems exist that pre-
vent gut microbes from acting as more potent weapons
against a variety of diseases, including tumors. First, due
to the limitation of sample allocation, the collected sam-
ple information cannot truly reflect the microbial com-
position of the gut in space [257]. It is still to be discussed
that stool samples represent the bacterial colonization in
the niche of the gut-intestinal tract, and it is even more
difficult to extract microbiota from tumors or other
focal sites. In addition, there are also many obstacles to
monitoring the temporal changes in the gut microbiome
during disease progression or treatment because the gut
microbiota is easily affected by diet, environment, host
age, gender, lifestyle and other factors, which reflect the
collective changes in multiple factors. Therefore, it is dif-
ficult to determine the causal relationship between the
gut microbiome and diseases. The second is the func-
tional diversity of the gut microbiota. For example, taxo-
nomically, bacteria of the same species differ greatly in
function. In addition, the same bacteria may show dif-
ferent characteristics due to environmental changes or
the composition of other bacteria, and different bacteria
may share similar metabolic pathways with similar func-
tions [47, 193]. Hence, the interactions between bacteria
should not be ignored. Finally, there is a diversity of data
and differences in analysis techniques. Although there is
a wealth of multiomics data, including human samples,
indicating the microbiome associated with disease and
treatment outcomes, reproducibility of results across
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research projects has been difficult to achieve (Table 1)
[258]. This may be due to, on the one hand, the differ-
ences that researchers collect or preserve samples for
research objects; on the other hand, the generation of
many multiomics data makes the computational infer-
ence of data a challenge, accompanied by redundant
data analysis methods. The solution to this problem may
require standard analytical manual in the future, includ-
ing machine learning and artificial intelligence, as well as
better data and resource-availability mechanisms.

Conclusion

The existing research results have provided substantial
evidence for the conclusion that the commensal microbi-
ome impacts the efficiency of antitumor immunotherapy,
and promoting the effect of antitumor immunotherapy by
modulating the composition of gut microbiota has been
shown to work. However, due to the variation in indi-
vidual microbiomes and limitations of complex multiom-
ics analysis, there is a lack of systematic research on the
factors of the microbiome that are involved in antitumor
therapy, and mutual authentication among study conclu-
sions cannot be obtained. Moreover, precise mechanistic
research on the impact of the microbiome on antitumor
immunity is still scarce. As a result, the manipulation
of the commensal microbiota by modern medical tech-
niques for the treatment of diseases, including tumors, is
still far from clinical application.

Nonetheless, it is optimistic that considerable resources
are being devoted to research that links commensal
microbiota and host health and disease. Preclinical and
clinical studies have demonstrated that regulation of the
gut microbiota may improve the efficacy of antitumor
therapy from multiple perspectives and at multiple levels.
In addition to knowledge regarding the individual differ-
ences in the commensal microbiome and the diversity of
influencing factors, individual multiomics analysis com-
bined with precision medicine, instead of broad FMT or
probiotics, will inevitably become the future direction of
the development of tumor immunotherapy or treatment
for other diseases affected by the microbiome.

Abbreviations

PFS Progression-free survival

(o) Overall survival

NGS Next-generation sequencing
ICB Immune checkpoint blockade
ACT Adoptive T-cell therapy
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MAMPs  Microbe-associated molecular patterns
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GPCR G-protein-coupled receptor

HDACs  Histone deacetylases

IFN-y Interferon-y

GZMB Granzyme B
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TCRs T-cell receptors

CTLA-4  Cytotoxic T-lymphocyte-associated antigen 4
PD-1 Programmed cell death protein 1

PD-L1 Programmed cell death protein 1 ligand
iIrAEs Immune-related adverse reactions

FMT Fecal microbiota transplantation

PAMPs  Pathogen-associated molecular patterns
NSCLC ~ Non-small cell lung cancer

TMAO Trimethylamine N-oxide

AhR Aryl hydrocarbon receptor
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TILs Tumor-infiltrating lymphocytes
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CARs Chimeric antigen receptors
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