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Abstract 

Background: The kidneys require vast amounts of mitochondria to provide ample energy to reabsorb nutrients and 
regulate electrolyte, fluid, and blood pressure homeostasis. The lack of the human model hinders the investigation of 
mitochondria homeostasis related to kidney physiology and disease.

Results: Here, we report the generation of mitochondria-rich kidney organoids via partial reprogramming of human 
urine cells (hUCs) under the defined medium. First, we reprogrammed mitochondria-rich hUCs into expandable inter-
mediate mesoderm progenitor like cells (U-iIMPLCs), which in turn generated nephron progenitors and formed kid-
ney organoids in both 2D and 3D cultures. Cell fate transitions were confirmed at each stage by marker expressions at 
the RNA and protein levels, along with chromatin accessibility dynamics. Single cell RNA-seq revealed hUCs-induced 
kidney organoids (U-iKOs) consist of podocytes, tubules, and mesenchyme cells with 2D dominated with mesen-
chyme and 3D with tubule and enriched specific mitochondria function associated genes. Specific cell types, such as 
podocytes and proximal tubules, loop of Henle, and distal tubules, were readily identified. Consistent with these cell 
types, 3D organoids exhibited the functional and structural features of the kidney, as indicated by dextran uptake and 
transmission electron microscopy. These organoids can be further matured in the chick chorioallantoic membrane. 
Finally, cisplatin, gentamicin, and forskolin treatment led to anatomical abnormalities typical of kidney injury and 
altered mitochondria homeostasis respectively.
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Introduction
Chronic kidney disease (CKD) is a serious public health 
problem, affecting 8–16% of the global population [1, 
2]. Disease progression leads to irreversible nephron 
loss and the effective clinical therapies remain lim-
ited. Mitochondria dysfunction is closely associated 
with kidney disease and underlines its roles as novel 
therapeutic targets [3–5]. However, owing to the lack 
of human experimental models, mechanisms of mito-
chondrial dysfunction in the development of CKD 
remain elusive. The generation of functional human 
kidney organoids may progress cell therapy develop-
ment for progressive kidney disease and its corre-
sponding models and provide a source for mechanistic 
studies and drug screening [6–9].

Currently, human kidney organoids can be estab-
lished from pluripotent stem cells (PSCs), including 
embryonic stem cells (ESCs) and induced PSCs (iPSCs), 
and adult kidney tissues. PSCs-induced kidney orga-
noids (P-iKOs) consist of cells from most kidney line-
ages, resembling an almost complete nephron in  vitro 
[10, 11]. However, the tumorigenicity and heterogene-
ity of human PSCs prohibit their future clinical applica-
tions. Meanwhile, the personalized generation process 
of P-iKOs remains lengthy and complicated. Adult tis-
sues derived kidney organoids, termed “tubuloids”, 
contain only tubular epithelial cells, and do not repre-
sent complete organs. Furthermore, the protocol for 
tubuloids relies on conditioned medium and expensive 
growth factors [12].

Thus, we wonder whether human kidney organoids 
can be induced in a personalized manner under defined 
medium in a convenient and economical way and by 
avoiding tumorigenicity issues. In addition, considering 
the vital roles of mitochondria in kidney function but 
lack of human models, mitochondria-rich kidney orga-
noids are needed to allow investigation of the relation-
ship between mitochondria and kidney physiology or 
disease. To develop such a system, we hypothesized that 
mitochondria-rich kidney organoids may be more eas-
ily induced from mitochondria-rich human urine cells 
(hUCs) through partial reprogramming, since it has been 
previously demonstrated that initially reprogrammed 
cells retain genetic and epigenetic memory and tend to 
regain their original phenotypes.

In this study, we described a robust system to gener-
ate hUCs-induced kidney organoids (U-iKOs) that con-
tain abundant mitochondria via partially reprogramming 
of hUCs into intermediate mesoderm progenitor like 
cells (U-iIMPLCs), then in turn generate nephron pro-
genitors and form nephron-like structures under defined 
medium. We found that the organoids can be generated 
from hUCs sourced from both healthy individuals and 
patients with kidney disease. The U-iKOs can recapitu-
late the structure and function of human nephrons physi-
cally and pathophysically in vitro. Therefore, U-iKOs may 
be used as an in vitro model for studying the mechanisms 
of kidney disease and drug screening in a personalized 
manner.

Materials and methods
Isolation and purification of urine cells
The study protocol for human urine sample collec-
tion was approved by the Ethics Committee of Nanfang 
Hospital, Southern Medical University, and Guang-
zhou Institutes of Biomedicine. Informed consent was 
obtained from all participants. Urine Cells were collected 
following the protocol described [13]. The samples of 
the mid-stream of urine from healthy female and male 
volunteers were collected and stored at 4  °C within 8  h 
before purification. The usual volume of specimens was 
50–200  mL. The samples were centrifuged at 500  g for 
8 min, and then the pellet was washed with about 10 mL 
DPBS supplemented with 1 × penicillin/streptomycin 
(lot. SH40003.01, Hyclone). After another centrifugation, 
the supernatant was removed and the pellets were resus-
pended with the urine cell culture medium supplemented 
with 10 μg/mL Primocin (lot. ant-pm-1, Invivogen). The 
urine cell culture medium was a one-to-one mixture of 
Renal Epithelial Growth Medium (REGM; lot. CC-3191, 
Lonza) and DMEM High Glucose (lot. SH30022.01, 
Hyclone) containing 10%FBS, 1 × L-GlutaMAX (lot. 
35050-061, GIBCO), and 1 × non-essential amino acids 
(NEAA; lot. 11140-050, GIBCO). Then the pellets were 
plated in the gelatin (lot. 07903, STEMCELL) coated 
6 cm culture dish and the culture medium was changed 
after 4 days. A few days later, hUCs grew and formed a 
few clusters of uniform colonies. In about 1–2  weeks, 
hUCs achieved confluence thereby allowing us to passage 
and perform reprogramming experiments.

Conclusions: Our study demonstrates that U-iKOs recapitulate the structural and functional characteristics of the 
kidneys, providing a promising model to study mitochondria-related kidney physiology and disease in a personalized 
manner.

Keywords: Kidney organoids, Mitochondria, Intermediate mesoderm progenitor like cells, Human urine cells, Partial 
reprogramming
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Reprogramming hUCs to U‑iIMPLCs
hUCs were induced by oriP/EBNA episomal vectors 
carrying a combination of the reprogramming factors 
OCT4, SOX2, SV40LT, KLF4, and miR302/367 through 
electroporation [14, 15]. To induce U-iIMPLCs, hUCs 
were treated with reprogramming medium contain-
ing 5  μM CHIR99021 (lot. T2310, Targetmol), 10  ng/
mL bFGF (lot. 100-18B, PeproTech), 10 ng/mL EGF (lot. 
AF-100–15, PeproTech), 1 μM EPZ5676 (lot. S7062, Sell-
eck) and 10 ng/mL Activin A (lot. 120-14E-1000, Pepro-
Tech) in basic medium Advanced DMEM F12 medium 
(lot. 12634010, GIBCO). During this stage, check the 
morphology of the cells and change the fresh reprogram-
ming medium every other day until tightly formed clus-
ters of cells formed after 7–9 days.

Maintaining culture of U‑iIMPLCs
On the 7–9  days of reprogramming, the U-iIMPLCs 
clones with appropriate size were picked in the main-
taining medium containing 5  μM CHIR99021, 10  ng/
mL hLIF (lot. 300–05, PeproTech), and 1  μM EPZ5676 
in basic medium Advanced DMEM F12 medium. The 
medium was changed every day. For passaging, U-iIM-
PLCs were dissociated with 0.25% trypsin into single cells 
and split at ratios of 1:3 every 2–3 days. Subcultured cells 
were used for growth curves, RNA extraction, and subse-
quent differentiation experiments.

Differentiation of U‑iIMPLCs into U‑iKOs
In short, to induce posterior intermediate mesoderm 
cells, the U-iIMPLCs were treated with 8 μM CHIR99021, 
10 ng/mL BMP4 (lot. 314-BP-01 M, R and D), and 10 ng/
mL Activin A in basic differentiation medium Advanced 
RPMI 1640 medium (lot. 12633–012, GIBCO) supple-
mented with 1 × L-GlutaMAX for 1  day, followed by 
10 ng/mL Activin A and 1 μM TTNPB (lot. S4627, Sell-
eck) for 1.5 days. To induce nephron progenitor cells, the 
medium was changed to 1  μM CHIR99021 and 10  ng/
mL FGF9 (lot. 100–23-250, PeproTech) for 1.5 days and 
then 10 ng/mL FGF9 with daily media change for another 
3  days. To differentiate of U-iNPCs to 2D kidney orga-
noids, the cells at day14-16 were fed with 10 ng/mL FGF9 
for another 8 days and basal medium with no additional 
factors until harvest, with changing medium daily.

To generate 3D kidney organoids, the colonies were 
picked and re-aggregated into bigger cell clusters with 
5–10 colonies per organoid using round bottom ultra-
low attachment 96-well plates (lot. 7007-24EA, Corn-
ing) at day 14. Transfering the 3D U-iKOs onto the upper 
chamber of Transwell (lot. CLS3470-48EA, Corning) for 
air–liquid interface (ALI) culture after cell clusters aggre-
gation for 24  h. After that, 10  ng/mL FGF9 with daily 

media change was performed at the bottom chamber, 
avoiding overflowing over the membrane until day 24.

To generate 3D kidney organoids by aggregating single 
cells, the picked colonies were collected and dissociated 
into single cells by Accutase (lot. 07920, STEMCELL). 
1.5–3 ×  105 cells (per well) were spun down at 300 g for 
5  min to aggregate into a pellet and cultured in 1  μM 
CHIR and 50  ng/mL FGF9 for 5  days. Then organoids 
were transferred to ALI culture and cultured in 10 ng/mL 
FGF9 until day 24 of differentiation.

In vitro dextran uptake assay
Kidney organoids differentiating for at least 24 days were 
cultured with 100  μg/mL fluorescence-labeled 10  kDa 
(lot. D22914, Thermo Fisher Scientific), 70  kDa (lot. 
D1818, Thermo Fisher Scientific), and 2000  kDa (lot. 
D7139, Thermo Fisher Scientific) dextran for 4 h. Then, 
kidney organoids were cultured in the basic medium 
without dextran for another 24  h and then were fixed 
for immunofluorescence analysis. The medium was only 
added into the bottom chamber of transwells.

Nephrotoxicity assay with cisplatin and gentamincin
Kidney organoids differentiating for at least 24 days were 
treated with the basic differentiation medium supple-
mented with 5 μM cisplatin (lot. P4394, Sigma), 5 mg/mL 
gentamicin, or sterile water as a negative control for 24 h, 
after which 3D U-iKOs were harvested for immunostain-
ing and gene expression analysis.

Cyst induction
To initiate cytogenesis, kidney organoids at D24 were 
treated with basal culture medium supplemented with 
either 5  μM forskolin (FSK; lot. C10901, ChemBest) or 
sterile water as a negative control for 4 days, after which 
3D U-iKOs were harvested for immunostaining and gene 
expression analysis.

Implantation of hUCs derived kidney organoids onto chick 
chorioallantoic membrane (CAM).
Briefly, fertilized chicken eggs were obtained from a com-
mercial supplier in Qingyuan City (in Guangdong, China). 
Eggs were incubated in a humidified atmosphere in a 37.5 °C 
incubator. At embryonic day (ED) 3.5, 2 mL of albumin was 
extracted from the egg using a 21-gauge syringe. Then a 
small window was opened by cutting the eggshell and was 
sealed with a breathable membrane. At ED 8–9, aggregated 
U-iNPCs at day 15–17 were implanted onto the surface of 
the CAM and incubated for 7 additional days.

Histological analysis
Grafts of CAM and 3D U-iKOs were fixed in 4% para-
formaldehyde at 4  °C overnight and 3D U-iKOs for 1  h 
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at room temperature (RT). Then samples were trans-
ferred to sucrose gradient (15%-30% sucrose, w/v) treat-
ment overnight and embedded in OCT compound 
(Leica). For histological analysis, 10  μm thick sections 
generated using a cryostat (Leica) were stained with 
Hematoxylin and Eosin (H&E). Images were captured 
using Pannoramic MIDI and processed by CaseViewer 
(3DHISTECH).

Immunostaining and confocal imaging
In short, fixed cells or slides were permeabilized by 0.2% 
Triton X-100 for 15 min and incubated in blocking buffer 
(PBS supplemented with 5% FBS, 2.5% BSA) for 1  h at 
RT. Subsequently, samples were washed, incubated with 
primary antibodies overnight at 4  °C, and incubated 
with Alexa-Fluor secondary antibodies at RT for 1 h. At 
last, nuclei were counterstained with DAPI (lot. D9542, 
Sigma) for 1  min at RT. Immunofluorescence was visu-
alized using LSM800 (Carl Zeiss). The antibodies and 
associated information are provided  (Additional file  2: 
Table S1).

Transmission electron microscopy (TEM)
In brief, kidney organoids were fixed in 2.5% glutaral-
dehyde and 2% paraformaldehyde overnight at 4  °C and 
washed with 0.1  M phosphate buffer 6 × 15  min. Then, 
samples were stained with 1% osmium tetroxide solution 
for 1  h, followed by 6 × 15  min washes. Subsequently, 
samples were dehydrated in ethanol gradient (50%, 70%, 
80%, 90%, 100%, and 100%) and acetone (100%) before 
infiltration with acetone: epon resin mixture (1:1) for 
2  h and then absolute resin overnight. The samples 
were reduced in size by cutting into small blocks (about 
2 × 2  mm) and then subjected to ultra-thin sections. 
Images were collected using either Tecnai G2 Spirit TEM 
(FEI).

Quantitative RT‑PCR (qRT‑PCR)
Total RNA was isolated using RNA-easy Isolation Rea-
gent (lot. R701-02, Vazyme) and 1  μg RNA was reverse 
transcribed using HiScript II Q RT SuperMix for qPCR 
(lot. R222-01, Vazyme). Then, qRT-PCR was carried out 

using ChamQ SYBR qPCR Master Mix (lot. Q311-03, 
Vazyme) and CFX Connect PCR machine (Bio-Rad). 
GAPDH was used as the housekeeping gene. Values were 
calculated by the delta CT method and all data were ana-
lyzed in triplicates. All primer sequences for the human 
sample are listed (Additional file 2: Table S2). Two-tailed 
Student’s t-test was used to determine statistical signifi-
cance between the control and test groups. The analysis 
was performed using Graphpad Prism.

Western blot analysis
Whole-cell extracts of cell samples were subjected to 
10–12% SDS-PAGE and transferred to PVDF membranes 
(lot. ISEQ00010, Millipore). Then, these PVDF mem-
branes were incubated with primary antibodies at 4  °C 
overnight. After being washed 3 × 10 min in TBST (TBS 
supplemented with 0.1% Tween-20), the membranes 
were incubated with HRP-conjugated secondary anti-
bodies (Beyotime) for 1 h at RT, followed by 3 × 10 min 
washes. Then the membranes were visualized with a 
GelView 6000 Plus (BLT Photon Technology). The anti-
bodies and associated information are provided   (Addi-
tional file 2: Table S1).

Bulk RNA‑seq library construction
After the total RNA extracts were prepared, RNA librar-
ies were established using  VAHTS® Universal V8 RNA-
seq Library Prep Kit for Illumina (lot. NR605-02, Vazyme) 
according to the manufacturer’s protocol. In brief, 
0.5–1 μg of total RNA was used for library construction. 
mRNA was enriched by the Poly(A) method with VAHTS 
mRNA Capture Beads (lot. NR1-01, Vazyme), followed 
by cDNA library preparation, library quality control, and 
sequencing using NovaSeq 6000 (Illumina).

ATAC‑seq library construction
ATAC-seq was performed using TruePrepTM DNA 
Library Prep Kit V2 for  Illumina® (lot. TD501-01, 
Vazyme), as previously described [16]. In brief, pellets 
of a total of 5–8 ×  104 cells were re-suspended in 50μL 
lysis buffer. Then the suspension was subjected to trans-
position reaction and purification with MinElute Kit 

(See figure on next page.)
Fig. 1 Generation of 2D kidney organoids from hUCs. A Schematic illustration of 2D kidney organoids starting from hUCs (human urine cells), 
hUCs-induced intermediate mesoderm progenitor like cells (U-iIMPLCs), hUCs-induced nephron progenitor cells (U-iNPCs), hUCs-induced kidney 
organoid (U-iKOs) at the indicated time points. B Representative bright-field images during A at day0, day9, day16, and day24. Scale bars, 250 μm. 
C Gene expression analysis for markers of the primitive streak (T, MIXL1, and TBX6), nephrogenic intermediate mesoderm (WT1 and HOXD11), 
nephron progenitor (SIX2, WT1, and PAX2), podocytes (PODXL and WT1), tubule epithelial cells (CDH6 and JAG1) during differentiation. The 
relative expression of each transcript to GAPDH expression is presented as the mean ± SEM (n = 6). D Representative loci for the close-to-open 
(CO), open-to-close-to-open (OCO), and close-to-open-to-close, (COC) peaks at different stages at hUC (day0), U-iIMPLCs (stage1, day9), early 
U-iNPCs (stage2, day16) and late U-iNPCs (stage2, day19). E Dynamic CO, OC, and permanently open (PO) chromatin regions are clustered for hUC, 
U-iIMPLCs, U-iNPCs (E) and U-iNPCs (L). Representative genes are noted for each subgroup on the right side. F Heatmaps for the motif enrichment 
among the OC, CO and PO subgroup peaks for stage1, and stage2 as shown in E. *p < 1e-30
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Fig. 2 Establishment of 3D U-iKOs. A Schematic illustration of 3D U-iKOs. Colonies at day14 in Fig. 1 were picked and then aggregated as pellets or 
single cells in suspension and air–liquid interface (ALI) culture to form 3D U-iKOs at indicated time points in B. B Representative bright-field images 
of 3D U-iKOs as in A. Scale bars, 250 μm. C Immunostaining analysis of nephron segment-specific markers for podocytes (PODXL, nephrin, and 
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(QIAGEN). After PCR amplification of transposed DNA 
fragments, the amplified libraries were purified using a 
Qiaquick PCR (QIAGEN) column. Then, purified librar-
ies were assessed by gel electrophoresis and Qsep100 
(Bioptic). Finally, the ATAC library was sequenced on 
NovaSeq 6000 (Illumina).

Single cell RNA‑seq (ScRNA‑seq) library preparation
Kidney organoids generated by colonies aggregation 
for at least 24  days were dissociated into single cells 
with Accutase at 37 °C and filtered through a 40 μm fil-
ter thrice to remove cell clumps. A minimum of 1 ×  104 
cells were loaded per well for single-cell RNA-seq library 
preparation with the Chromium Next GEM Single 
Cell 3’ Reagent Kits v3.1 (lot. CG000316, 10 × Genom-
ics) according to the manufacturer’s recommendations. 
Libraries generated were sequenced on Illumina NovaSeq 
6000 platform.

ATAC‑seq data analysis
All of the sequencing data were aligned to the human 
genome assembly (hg38) using bowtie2 (v.2.2.5) with the 
following options (−  p 10–very-sensitive–end-to-end–no-
unal) [17]. Duplicate reads were discarded using samtools 
and picard tools. For visualization, the aligned BAM files 
were converted to read coverage files (bigWig format) using 
deepTools and signals were normalized to RPKM value [18]. 
Then, MACS2 was used to call narrow peaks with default 
options [19]. After a series of threshold filtering, we set 16 as 
the threshold value to define open/closed regions. If the sig-
nal RPKM of the sample is lower than this value, it is marked 
as ‘closed’, otherwise, it is annotated as ‘open’. Motif analysis 
was performed using the findMotifsGenome.pl program in 
HOMER (v.4.10) with options (− p4-size given) [20]. Peaks 
annotation was performed using ChIPseeker (v1.22.1). ChIP-
peakAnno was used to plot Venn diagrams of peaks. Other 
analyses were performed using glbase with personalized 
scripts [21].

Bulk RNA‑seq data analysis
The paired-end sequenced reads were aligned to a tran-
scriptome index generated from the GENCODE annota-
tions transcriptome (Hg38), using RSEM, bowtie2 [22]. 

And the Transcripts Per Kilobase Million (TPM) values 
calculated were used for downstream differential expres-
sion analysis based on the R/Bioconductor (v3.6.1). We 
calculated the top 5000 highly variable genes and then 
used them for principal component analysis (PCA) and 
correlation analysis. A fold change of 1.5 was used as the 
threshold to filter the differentially expressed genes. Gene 
ontology (GO) analysis was performed using the R pack-
age clusterProfiler [23]. The associated plots were gener-
ated using the ggplot2 package (v3.3.2).

ScRNA‑seq analysis
Data quality was assessed with Fastp. Paired-end 
sequencing reads were aligned to hg38 genome using 
the STAR (v2.7.6a) with parameter (–soloType Drop-
let–soloFeatures Gene–soloCBstart 1–soloCBlen 16–
soloUMIstart 17–soloUMIlen 12) [24]. The read1 data 
contains the first 16  bp of barcode sequence, and the 
next 12  bp were recorded as unique molecular identifi-
ers (UMIs). The read2 with 91 bp was used for genome 
alignment. We used the Python library Scanpy (v1.6.0) 
and R library Seurat (v3.1.4) to pre-process the data [25, 
26]. We filtered low-quality cells with less than 1,500 
and greater than 10,000 detected genes, the sum of UMI 
counts greater than 60,000, and the percentage of mito-
chondrial genes more than 0.2. And then we predicted 
doublets and removed 44 cells with parameter (thresh-
old = 0.4) using scrublet, a single-cell remover of dou-
blets. This pro-processing step results in 10,739 cells with 
4591 median genes from 3D U-iKOs, and 10,125 cells 
with 2815 median genes from 2D U-iKOs samples. We 
used default settings in the Scanpy to normalize the gene 
expression counts with the function ‘pp.normalize_per_
cell’ and ‘pp.log1p’, and identified the top 4,000 highly 
variable genes (HVGs) with the function ‘pp.highly_vari-
able_genes’. We scaled data using the function ‘pp.scale’ 
with all detected genes. The HVGs were conducted for 
PCA and then found the neighbors for each cell with 30 
PCs. UMAP was used for dimensionality reduction and 
visualization in 2D space with function ‘tl.umap’. Leiden 
clustering was processed on the HVGs calculated across 
each sample, with function ‘tl.leiden’ and parameter 
(resolution = 0.5).

(See figure on next page.)
Fig. 3 Efficient maintained U-iIMPLCs retain nephrogenic potential. A Cell morphology of U-iIMPLCs subcultured at different passages. The same 
strain of U-iIMPLCs 1# with different passages P0, P1, P5, P9, P17, and P21 are presented. Scale bars, 250 μm. B Growth curve of U-iIMPLCs for 
different strains of U-iIMPLCs 2#, 6#, and 8#. C Correlation analysis showing gene expression profiles of hUCs, hPSCs, and U-iIMPLCs 1# maintained 
at different passages. D Gene expression analysis for hUCs, intermediate mesoderm, paraxial mesoderm, Lateral plate mesoderm, pluripotent, 
ectoderm, and endoderm markers of the cells shown in C. E Gene expression analysis for intermediate mesoderm progenitor markers for different 
strains with different generations. The relative expression of each transcript to GAPDH expression is presented as the mean ± SEM. F Representative 
stereo microscope images showing 2D kidney organoids differentiated from the same strain of 8# U-iIMPLCs at different passages in a single well 
of a 24-well plate. Scale bars, 500 μm. G The number of 2D U-iKOs in F. H Representative stereo microscope images showing 2D kidney organoids 
differentiated from different strains at passage 10. Scale bars, 500 μm. I The number of 2D kidney organoids is shown in H
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We then used the Seurat function ‘FindAllMarkers’ to 
calculate the differentially expressed genes for each clus-
ter. Cluster identity was performed by comparing these 
genes with a list of well-known genes for kidney cell types 
provided in Fig.  3B. And subclustering was performed 
described above. And the GO analysis was performed 
using the R package clusterProfiler.

Integrated analysis of multiple datasets
To compare the cell types derived from different orga-
noid protocols and fetal/adult human kidney tissue, we 
collected iPSC-derived organoids T-iKOs, M-iKOs and 
C-iKOs, and human fetal kidney at week16 [27–29]. 
We re-analyzd these data and identified cluster with 
the information provided in these articles. We then 
performed comparative analysis on multiple datasets 
using Seurat V3. Firstly, it selected 2000 features that 
are repeatedly variable across the multiple datasets and 
then integrated into a combined data using function 
‘IntegrateData’. The canonical correlation analysis (CCA) 
was performed to identify common sources of variation 
across the datasets.

We calculated the differential expression genes using 
the function ‘FindAllMarkers’ with the for each data, 
and dotplots showed selected genes were significantly 
different.

Results
U‑iKOs generation under a defined medium
Previously, we demonstrated that hUCs are reprogramma-
ble into iPSCs, neural progenitor cells (NPCs) and cardio-
myocytes by defined factors [13, 30, 31], indicating the high 
cell fate plasticity of hUCs. Hence, we speculated whether 
hUCs could be reprogrammed into other cell fate states, 
such as kidney lineage-associated progenitor cells, which 
are the developmental ancestors of differentiated hUCs. 
To test this hypothesis, we isolated and cultured hUCs 
in renal epithelial growth medium (REGM), and nearly 
100% of hUCs expressed the tubular epithelial cell marker, 
PAX8. Furthermore, hUCs were reprogrammed in a series 
of defined medium. Through screening and optimiza-
tion, we eventually developed a defined medium includ-
ing the following chemicals: CHIR99021 (5 μM), EPZ5676 
(1 μM) and Actinvin A (10 ng/mL), bFGF (10 ng/mL), and 
EGF (10 ng/mL) to convert hUCs into U-iIMPLCs within 

9  days. Followed by step-wise differentiation under the 
defined medium, U-iIMPLCs were induced into nephron 
progenitor cells (U-iNPCs) at 14–16 days and then U-iKOs 
at 22–24  days (Fig.  1A, B). These intermediate identities 
were confirmed through gene expression analysis such 
as T, MIXL1, and TBX6 for primitive streak; WT1 and 
HOXD11 for nephrogenic intermediate mesoderm; SIX2, 
WT1, and PAX2 for nephron progenitors; Podocalyxin 
(PODXL) and WT1 for podocytes, and CDH6 and JAG1 
for tubule epithelial cells (Fig.  1C, Additional file  1: Fig. 
S1A, F). Furthermore, they did not express markers for 
the pluripotent, definitive endoderm, or ectoderm (Addi-
tional file 1: Fig. S1B). We successfully generated organoids 
from 11 individuals, including 8 healthy volunteers and 3 
patients with CKD from both males and females (Addi-
tional file  1: Fig. S1C). Patient-derived urine cells under-
went a similar process of cellular morphological changes 
and gene expression profile changes to healthy volunteers 
(Additional file 1: Fig. S1D, E).

To further characterize the process of U-iKOs gen-
eration, we profiled the chromatin accessibility and 
transcriptome dynamics using ATAC-seq and RNA-
seq respectively at each stage. At the chromatin level, 
ATAC-seq analysis revealed that genomic loci associ-
ated with MIXL1, TBX6, WT1, PAX8, LHX1, CALB1, 
and PODXL underwent closing or opening as shown 
in Fig.  1D. Notably, the PAX8 locus closed at the first 
stage, but then opened upon acquisition of kidney lin-
eage fate (Fig.  1D), whereas the TBX6 locus opened 
at the first stage but then closed at stage 2 (Fig.  1D). 
Globally, loci underwent dynamic close-to-open (CO), 
or open-to-close (OC) remodeling during the entire 
process as shown in Fig.  1E. At each transition, we 
identified critical genes up- or down-regulated by time-
course RNA-seq (Additional file 1: Fig. S2A), with cor-
responding biological pathways including mesoderm 
development, kidney development, and epithelial cell 
morphogenesis involved (Additional file 1: Fig. S2B–D). 
Interestingly, loci with CO or OC were enriched with 
specific transcription factors, such as those from the 
FORKHEAD, HMG, HOMEBOX, T-BOX, TEAD, and 
BZIP families (Fig.  1F), reflecting the specific roles 
of each factor during the two main transitions from 
U-iIMPLCs to U-iNPCs and then from U-iNPCs fur-
ther to U-iKOs.

Fig. 4 ScRNA-seq profiling of cell types in U-iKOs. A UMAP projection of 10,125 single cells from 2D U-iKOs into 13 distinct clusters. Four main cell 
types are circled on the diagram with different colors. B UMAP projection of 10,739 single cells from 3D U-iKOs into 11 distinct clusters. Four main 
cell types are identified in A. C Heatmap of well-known markers and signature genes in A. D Heatmap of well-known markers and signature genes 
in B. E Barplot of the tubule, podocyte, neuron, and mesenchyme between 3 and 2D U-iKOs. F UMAP projection of tubule and podocyte from 3 and 
2D U-iKOs into 9 clusters. G Signature genes in distal tubule1, distal tubule2, tubule_GDF15 + , and collecting duct (CD). H Barplot of 3D and 2D 
cells in each cluster in F. I Heatmap of differentially expressed genes between 4 clusters in F, selected signature genes, and GO term with p values in 
the right

(See figure on next page.)
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The surprisingly simple way to generate organoids 
directly further encouraged us to design methods to 
generate 3D organoids. As shown in Fig. 2A, we came 
up with a relatively straightforward procedure to gen-
erate 3D in 24  days. As shown in Fig.  1, we picked 
colonies from a 16-day culture and then either aggre-
gated them directly for 1  day or dissociated them 
into single cells before aggregation for 5  days. These 
aggregated cells were then placed in the 3D air–liq-
uid interface (ALI) culture, as illustrated in Fig.  2A. 
On day 19, cells from colonies grew into organoids, 
whereas those from single cells remained as spherical 
cysts (Fig. 2B). Yet, at day 24, both procedures gener-
ated organoids with specialized and complex struc-
tures (Fig. 2B, right panels). We further characterized 
these organoids by performing immunostaining for the 
specific markers as shown in Fig.  2C. We accurately 
identified kidney-specific structures and cells such 
as podocytes (PODXL, nephrin, and WT1), proximal 
tubules (LTL), medial tubules (JAG1), distal tubules 
(PAX2, PNA and CDH1), and basement membrane 
(LAM). These results suggested that high-quality 3D 
organoids can be generated using aggregation and ALI 
culture conditions. Together, through partial repro-
gramming and staged differentiation under defined 
medium, we obtained personalized kidney organoids 
within a month. To obtain kidney organoids from PSCs 
in a personalized way, somatic cell reprogramming is 
required to obtain iPSCs and then proceed to the dif-
ferentiation process, which typically takes 2–3 months 
following literature (Fig. 1G) [6, 32].

Long‑term expanding U‑iIMPLCs for U‑iKOs generation
During daily cell culture, certain hUCs from some indi-
viduals or batches proliferated slowly or poorly, which 
lengthened the time required to collect sufficient 
hUCs for reprogramming. Therefore, we examined 
whether any progenitor state during the U-iKOs gener-
ation could expand long-term in vitro, which is of vital 
importance for optimization, functional validation, and 

future application. By optimizing culture conditions, 
we succeeded in developing a defined medium includ-
ing CHIR99021 (5 uM), EPZ5676 (1  μM), and hLIF 
(10  ng/mL) to support long-term growth and expan-
sion of U-iIMPLCs, but not for U-iNPCs or U-iKOs 
(data not shown). Under the defined medium, U-iIM-
PLCs grew in tight clusters and expanded in  vitro for 
more than 20 passages within 80  days (Fig.  3A, B). 
RNA-seq indicated that the stable transcription pro-
files of U-iIMPLCs were distinct from those of hUCs 
and hPSCs (Fig.  3C). In detail, U-iIMPLCs expressed 
intermediate mesoderm specific markers OSR1 and 
HOXD11 but not the paraxial mesoderm markers 
MSGN and MESP1, lateral mesoderm markers FOXF1 
and NKX2.5, pluripotent genes NANOG, ectodermal 
genes SOX1 and PAX6, and endodermal genes SOX17 
and FOXA2 (Fig. 3D). Consistently, qRT-PCR analysis 
showed that U-iIMPLCs from three different cell lines 
at passages 2, 5, 10,15, 20, and 25 similarly expressed 
T, MIXL1, OSR1, and HOXD11 similarly (Fig. 3E). To 
assess the potential of U-iIMPLCs for U-iKOs genera-
tion, we chose U-iIMPLCs from the same cell line at 
passage 5, 10, 15 and 6 different cell lines at passage 
10 and seeded at 10‒12.5 ×  104 cells/cm2 for U-iKOs 
induction (Fig.  3F, H). Following a two-stage process, 
U-iIMPLCs efficiently differentiated into kidney line-
ages and formed more than 600 2D U-iKOs per well of 
24-well cell culture plate (Fig.  3G–I). Taken together, 
we concluded that U-iIMPLCs can self-renew in vitro 
under defined medium and possessed the potential to 
generate U-iKOs efficiently.

Characterizing U‑iKOs by single cell RNA sequencing 
(scRNA‑seq)
Cell type diversities in organoids were further described 
using scRNA-seq. These results showed that the 10,125 
single cells from 2D U-iKOs could be classified into 13 
distinct clusters (Fig.  4A), while the 10,739 single cells 
from 3D U-iKOs into 11 distinct clusters (Fig.  4B) with 
high quality (Additional file  1: Fig. S3A). Overall, four 
major cell types were identified, including podocytes, 

(See figure on next page.)
Fig. 5 U-iKOs are rich in mitochondria. A The UMAP shows the integration of 3D U-iKOs, M-iPSC, T-iPSC, C-iKOs, and human fetal kidney, with 
cell types on the right. M-iKOs, iPSC-induced organoids with protocol by Morizane; T-iKOs, iPSC-induced organoids with protocol by Takasato; 
C-iKOs, iPSC-induced organoids from Combes’s study; Fetal_kidney, human fetal week16 kidney from Lindström’s study. B Comparison of the 
proportions of cell types in 3D U-iKOs, M-iKOs, T-iKOs, C-iKOs and human fetal kidney. C GO analysis of differentially expressed genes in 3D U-iKOs. 
D Dotplot shows differentially expressed genes of 3D U-iKOs related to nephron function (top panel), membrane transporters (middle panel), and 
mitochondia metabolism (bottom panel) compared with with other data. E Gene expression analysis for differentially expressed genes in U-iKOs in 
D of the mature tubule (CUBN, LRP2, and SLC12A1), AGT (angiotensinogen), and mitochondria metabolism (ATP1A2, ATP5G1, MUC1, and MRPL48). 
The relative expression of each transcript to GAPDH expression is presented as the mean ± SEM (n = 5). *P < 0.05 vs. the U-iIMPLCs; **P < 0.01 vs. the 
U-iIMPLCs; ***P < 0.001 vs. the U-iIMPLCs; ****P < 0.0001 vs. the U-iIMPLCs. (F) TEM of hUCs (upper panel) and 3D U-iKOs (botttom panel). Abundant 
mitochondria indicated with red asterisks. Scale bars, 1 μm
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tubules, mesenchyme, and neural cells, which were con-
sistent with the immunostaining results described above. 
These main types were further classified into 13 and 11 
subtypes in the 2D and 3D organoids respectively with 
specific markers identified (Fig.  4C, D). The heatmap 
shows similar cell types in 2D and 3D organoids with a 
high correlation (Additional file  1: Fig S3B). For the 2D 
culture of U-iKOs, the predominant cell types were mes-
enchyme related with five distinct subtypes, specifically 
labeled with PCLAF/UBE2C (subtype1), SFRP2/COL2A1 
(subtype 2), PLP1/NPR3 (subtype 4) and H2BC9 and 
CSKMT (subtype 5) (Fig.  4C). Interestingly, subtype 3 
appeared to share markers with subtypes 1 and 2, sug-
gesting that these cells may be intermediates (Fig.  4C). 
On the other hand, 3D U-iKOs had ~ 57% tubular epi-
thelial cells, suggesting that the 3D condition favors the 
tubular structure. Reflecting being more mature, 3D 
U-iKOs featured a collecting duct-like that was absent 
from the 2D ones (Fig.  4B, D). Furthermore, the vari-
ous cell types in 3D U-iKOs had more complex markers 
than their counterparts in 2D, again reflecting a more 
mature state (Fig. 4D). The difference between 2 and 3D 
became apparent when cell type diversities were com-
pared directly, as shown in Fig.  4E, F,  as 3D organoids 
were enriched with the loop of Henle, proximal tubule, 
distal tubule, podocyte, and tubule progenitors, and col-
lecting tubule compared to 2D organoids with podocyte 
and distal tubule. It was of interest to note that, even with 
the same origin of cells and the same culture media, cul-
ture dimensions, i.e., 2D vs. 3D, they conferred drastically 
different cell fates (Fig.  4G–I). For instance, 2D gener-
ated more distal tubule cells and tubule GDF15 + cells 
(Fig.  4G–I). Collecting tubule-like cells were unique in 
only 3D conditions, reflecting the spatial requirement 
for specific cell types such as collecting tubule line-
age (Fig.  3G–I). Hence, our findings demonstrated that 
3D is superior to 2D in generating more mature kidney 
organoids.

The podocytes were further classified into four dif-
ferent groups, including NPHS2, SUSD3, MKI67, and 
CLDN6 respectively (Additional file  1: Fig. S3C). These 
four groups of cells appeared to capture different stages 
of podocyte development. The NPHS2 + cells are the 

mature type expressing PODXL, PTPRO, CLIC5, and 
other genes critical to glomerular structure and function 
(Additional file 1: Fig. S3C, D, blue). Marked by CLDN6, 
a tightly clustered group of podocytes (Additional file 1: 
Fig. S3C, red), expressed genes critical for kidney mor-
phogenesis, nephron development, and epithelium 
development (Additional file  1: Fig. S3D, bottom). The 
MKI67 + cells actively proliferated and expressed genes 
involved in DNA replication, nuclear division, and chro-
mosomal segregation (Additional file 1: Fig. S3C, green). 
The SUSD3 + cells expressed genes actively involved in 
metabolic processes and hypoxia response (Additional 
file 1: Fig. S3D).

The proximal tubule cluster of cells were subdivided 
into 5 groups, marked by IRX1, CUBN, WT1, SLC2A1, 
and MKI67 respectively (Additional file  1: Fig. S3E). 
Remarkably, CUBN + proximal tubule cells reflected the 
stage of differentiation and also expressed genes related 
to reabsorption function, such as LRP2, APOM, and 
DAB. Again, the MKI67 marked the proliferation group 
that also expressed genes implicated in DNA replication 
and the cell cycle (Additional file 1: Fig. S3F). The other 
three groups of cells reflected various stages of devel-
opment, as exemplified by the mature cell types in the 
proximal tubule /loop of Henle (Additional file  1: Fig. 
S3E, F). The proximal tubule is a major kidney function 
structure and the recapitulation of these cell types fur-
ther demonstrated the potential of our approach. The 
loop of Henle and the distal tubule was well represented 
well in the organoids, including diverse cell types from 
GATA3 + cells to SLC12A1 + cells, again reflecting the 
fates of cells undergoing differentiation and maturation 
(Additional file 1: Fig. S3G, H). Mature cell types marked 
by SLC12A1, CLDN10, ATP1A2, and other genes depict 
the function of the loop of Henle with ion homeostasis 
and regulation of pH. The GATA3 + showed the expres-
sion of collecting duct-specific genes SLC14A2, TBX3, 
and SLC12A2, which produced progenies with branch-
ing morphogenesis of an epithelial tube and ureteric bud 
morphogenesis. (Additional file 1: Fig. S3G, H).

Together, the identification of individual cell types 
within the organoids suggested that the 3D condition 
recapitulated various aspects of in vivo development and 

Fig. 6 Structure and function of 3D U-iKOs. A Immunofluorescence analysis of fluorescence-labeled dextran uptake assay in 3D U-iKOs for 10 kDa, 
70 kDa, and 2000 kDa of dextran. Scale bars, 50 μm. B TEM of 3D U-iKOs (day 24). Podocyte (p) with characteristic large nuclei and primary processes 
(pp) and secondary processes (sp) in the upper panel. A putative proximal tubule cells with enriched mitochondria (mit) and a lumen filled with 
closely packed microvilli and the brush border (bb) in the middle panel. A putative distal tubule with relatively sparse short microvilli (m) and tight 
junctions (tj) in the bottom panel. Scale bars, 2 μm. C H and E staining of implanted kidney organoids in the CAM for 6 days. Magnified views of 
glomerular (G) and tubular (T) cells are shown. Scale bars, 100 μm. D Confocal microscopy images of implanted organoids in C stained for parietal 
epithelial cells maker (PAX8), bowman’s capsule basement membrane (LAM), and tubular markers (LTL, CDH1, and PAX8). Scale bars, 50 μm

(See figure on next page.)
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generated cell types that are available under physiological 
condition.

U‑iKOs are rich in mitochondria
Due to the unique way of U-iKOs generation, we hypoth-
esized that U-iKOs might possess some different features 
from the developed P-iKOs recently. In addition, short-
age of the research on the similarity between organoids 
and human fetal kidney also inspired us to make com-
parisons. To address this, we collected similar scRNA-
seq datasets generated from P-iKOs and published 
human fetal kidney at 16  weeks, and then made com-
parisons, showing that U-iKOs and P-iKOs shared most 
tubule epithelial cells and mesenchyme cells (Fig. 5A). In 
detail, U-iKOs contained collecting duct-like cells which 
were not generated in P-iKOs, and a higher percent-
age of the loop of Henle/distal tubule (Fig.  5B). In con-
trast, we verified that P-iKOs and fetal kidney contained 
the endothelial cells subpopulation that was absent in 
U-iKOs. Off-target cells, such as muscle cells and mel-
anocytes, were generated in P-iKOs but not in U-iKOs 
(Fig. 5B), suggesting cell fate commitment of U-iIMPLCs 
for U-iKOs induction. The differences in cellular compo-
sition between U-iKOs, P-iKOs and fetal kidney inspired 
us to make an in-depth analysis in molecular level. GO 
term analysis revealed that U-iKOs were specifically 
enriched in mitochondria ATP synthesis and metabolic 
process, proton transmembrane transport, and kidney 
development (Fig.  5C), whereas differentially expressed 
genes in P-iKOs were associated with Golgi vesicle 
transport, RNA splicing, and cytoplasmic translation 
(Additional file 1: Fig. S4A–D). Compared to organoids, 
human fetal kidney was enriched in response to unfolded 
protein and response to temperature stimulus with 
higher expression level of HSPA1A, HBG2 and GPC3, 
consistent with those previously described [28]. Consist-
ently, we found that U-iKOs expressed a higher level of 
kidney function associated genes, such as LRP2 (mega-
lin; macromolecules and numerous ligands reuptake), 
CUBN (endocytic receptor), AGT (pre-angiotensinogen), 
PRCP (a serine exopeptidase that acts on angiotensin II), 
PKM (glycolysis), and LDHA (oxidoreductase) (Fig. 5D). 

The results revealed that membrane transporters and 
mitochondria metabolism-related genes were specifically 
expressed in U-iKOs but not in P-iKOs, such as SLC12A1 
(sodium, potassium, and chloride ion cotransporter), 
SLC5A3 (sodium transport), SLC25A1 (tricarboxylate 
transporter), SLC25A3 (phosphate carrier protein, mito-
chondrial), and ATP1A2 (sodium/potassium-transport-
ing ATPase) (Fig.  5D), suggesting that cells in U-iKOs 
may contain abundant mitochondria. The expression of 
these genes was also validated by qRT-PCR detection 
(Fig.  5E). Nephron function maker, such as SLC12A1, 
LRP2 were validated in 3D U-iKOs (Additional file  1: 
Fig. S4E). To further confirm these results, we examined 
cellular organelles in hUCs and U-iKOs using TEM and 
showed that both proximal and distal tubule epithelial 
cells consisted of a number of mitochondria in the cyto-
plasm (Fig.  5F). Taken together, these results demon-
strated that U-iKOs are rich in mitochondria, validating 
our hypothesis that mitochondria-rich kidney organoids 
may be easily induced from mitochondria-rich human 
urine cells through partial reprogramming.

Structure and function of developed 3D U‑iKOs
ScRNA-seq provided evidence that the 3D organoids 
possessed the cellular diversity to perform kidney func-
tions. To further characterize the structure and anatomy 
of the organoids, we observed the uptake of dextran 
under 100 kDa and the exclusion of those above 2000 kDa 
(Fig. 6A). The results showed that these organoids func-
tion similarly to the kidneys. Additionally, we showed 
that the ultrastructure of the organoids resembled those 
of the kidneys. Within U-iKOs, the podocytes had typical 
macronuclei and primary and secondary foot processes. 
The putative proximal tubule epithelium formed lumen-
like structures with dense apical microvilli at the brush 
border and abundant mitochondria in the cytoplasm. 
The putative distal tubule epithelium showed sparse and 
short microvilli and tight junctions (Fig. 6B).

We then implanted the organoids into the CAM and 
found that they further matured structurally within 
7  days (Fig.  6C, Additional file  1: Fig. S5A–C), with 

(See figure on next page.)
Fig. 7 3D U-iKOs disease models. A Immunofluorescence analysis of 3D U-iKOs treated with cisplatin (5 μM) for 24 h. Scale bars, 50 μm. B H and 
E staining of U-iKOs treated with cisplatin in A. Scale bars, 100 μm. C Scatterplot showing the up-regulated genes (red) and down-regulated 
genes (blue) between control and cisplatin treatment groups. D GO analysis of C. E Representative bright-field images of control and gentamicin 
treatment cells. Scale bars, 250 μm. F Immunofluorescence analysis of 3D U-iKOs treated with control and gentamicin (5 mg/mL) for 24 h. G 
Scatterplot showing the up-regulated genes (red) and down-regulated genes (blue) between control and gentamicin treatment groups. H GO 
analysis of G. I Heatmap shows common differentially expressed genes of FSK, cisplatin, and gentamicin treatment groups compared to control 
and their respective differentially expressed genes. J–L Gene expression analysis for differentially expressed genes after cisplatin, gentamicin, and 
FSK treatment in I. The relative expression of each transcript to GAPDH expression is presented as the mean ± SEM (n = 4). *P < 0.05 vs. the control 
group; **P < 0.01 vs. the control group; ****P < 0.0001 vs. the control group
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glomerular and tubular cells as marked. Finally, we per-
formed confocal microscopy on grafts (Fig.  6D) and 
showed that glomerular markers PODXL, nephrin, WT1, 
PAX8, and LAM and tubular markers LTL, CDH1, and 
PAX8 were present in the developed organoids. We also 
noticed that PAX8 + parietal epithelial cells were present 
on the wall of Bowman’s capsule, indicating that glo-
meruli acquired a much more mature architecture in the 
CAM transplantation. Together, these results suggested 
that a rather comprehensive recapitulation of kidney 
function could be established in vitro through our repro-
gramming approaches.

Generation of kidney disease models with 3D U‑iKOs
The structure and function of U-iKOs further inspired 
us to evaluate whether these organoids be used to model 
kidney diseases. To this end, we treated the U-iKOs with 
cisplatin for 24 h, which is a nephrotoxic drug used in the 
chemotherapy of malignant tumors [33]. Interestingly, 
cisplatin treatment resulted in the up-regulation of kid-
ney injury molecule-1 (KIM-1), a major marker for acute 
kidney injury (Fig.  7A). Hematoxylin–eosin (HE) stain-
ing showed that tubular epithelial structures were nearly 
destroyed following cisplatin treatment (Fig.  7B). Mean-
while, we collected U-iKOs samples with or without cispl-
atin treatment for RNA-seq. GO analysis further indicated 
that cisplatin treatment triggered upregulation of genes 
that are strongly enriched in cell cycle DNA replication, 
signal transduction by p53 class mediator, apoptotic sign-
aling pathway, and mitochondrial depolarization while 
downregulated genes were closely related to glomerular 
epithelial cells differentiation and mitochondria respira-
tory chain assembly (Fig.  7C, D). In addition to chemo-
therapeutic drugs, antibiotics such as gentamicin, are 
another kind of nephrotoxic drugs [34]. Thus, we treated 
the U-iKOs with gentamicin for 24  h and observed that 
U-iKOs displayed similar cellular morphological changes 
as cisplatin treatment and upregulated KIM-1 expres-
sion (Fig.  7E, F). RNA-seq data showed that gentamicin 
treatment increased the expression of genes involved in 
unfolded protein, apoptosis, negative regulation of cell 
growth and mitochondria autophagy, and the downregu-
lated genes related to nephron tubule morphogenesis and 
ion homeostasis (Fig. 7G, H). On the other hand, forskolin 
or FSK, a chemical agonist to activate intracellular cAMP 
levels, is often used for cystogenesis induction in P-iKOs 
from patients with polycystic kidney disease (PKD) or 
non-PKD iPSCs [8, 35, 36]. Consistently, we observed that 
U-iKOs formed enlarged cyst structures after FSK treat-
ment for 4  days, as validated by HE staining and immu-
nostaining with tubule epithelial cell markers (Additional 

file 1: Fig. S6A–C). Interestingly, we found that FSK treat-
ment enhanced renin, AGT, and PRCP expression which 
was confirmed in P-iKOs recently [37] (Additional file  1: 
Fig. S6D, E). Compared with untreated U-iKOs, FSK treat-
ment led to unregulated genes enrichment in the regula-
tion of cell morphogenesis and organelle fission while 
downregulated genes affected kidney epithelium devel-
opment and pattern specification process (Additional 
file  1: Fig. S6F, G). Finally, although all these three mod-
els affected mitochondria homeostasis, we assessed and 
compared the expression of genes involved in mitochon-
dria dynamics. Cisplatin, gentamicin, and FSK treatment 
all affected mitochondrial function associated genes such 
as BID, ATG13, BNIP3, AMBRA1, SURF1, and COX5A 
(Fig. 7I, left), which were previously demonstrated to regu-
late mitochondria-related kidney pathologies in  vivo [3, 
38–42]. The expression of BID, AMBRA1, and ATG13 was 
also validated by qRT-PCR (Fig. 7J–L). On the other hand, 
mitochondria homeostasis-associated genes were specifi-
cally expressed in these three models respectively, suggest-
ing that cisplatin, gentamicin, and FSK treatment resulted 
in kidney injury in a pathology-specific manner (Fig.  7I, 
right panel). Then, we also validated differentially altered 
genes expression in each disease model by qPCR (Addi-
tional file 1: Fig. S6H). Taken together, these results dem-
onstrated that U-iKOs can be used as an in vitro model to 
mimic kidney injury conditions related to mitochondria 
homeostasis in a personalized manner.

Discussion
The kidney, one of the highest metabolically active organs 
in the human body, requires abundant mitochondria to 
provide sufficient energy to maintain function homeo-
stasis [43]. To the best of our knowledge, this is the first 
report on the generation of mitochondria-rich kidney 
organoids via the partial reprogramming of mitochon-
dria-rich human urine cells into the intermediate meso-
derm stage. The entire process was induced under the 
defined medium within 24 days. Furthermore, we devel-
oped a defined medium to allow U-iIMPLCs self-renew 
and possess the potential to generate U-iKOs efficiently 
in vitro. The U-iKOs could recapitulate kidney structure 
and function in  vitro and mimic mitochondria-related 
kidney disease conditions through cisplatin, gentamicin, 
and FSK treatment respectively. Collectively, our study 
provides a practical platform to study the pathogenesis of 
kidney diseases, drug screening and regenerative medi-
cine purposes in a personalized manner. Compared to 
P-iKOs, adult kidney biopsy-derived organoids, and ani-
mal models, U-iKOs are appealing for drug toxicity test-
ing and regenerative medicine purposes. The generation 
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of U-iKOs is time-saving and easy to manipulate from 
both healthy volunteers and patients with CKD of dif-
ferent ages and gender as well as avoids tumorigenicity 
issues that might occur regarding the application of 
P-iKOs. In addition, unlike recently reported “tubuloids” 
which contain only tubular epithelial cells and rely on 
a conditioned medium, U-iKOs are generated under a 
defined medium and possess the most typical cell types 
of kidney lineage, including both epithelial and mesen-
chymal cells, to form a more complex structure. Thus, 
U-iKOs resembled an almost complete nephron in vitro 
and were superior to tubuloids regarding the study of cel-
lular interactions and communications among different 
kidney lineage cells .

Partial reprogramming of a certain cell type into 
another bypassing pluripotency is a practical way to 
induce functional cells in  vitro or regenerate and repair 
tissues in  vivo [44–46]. Recently, Chen et  al. reported 
that in  situ partial reprogramming of cardiomyocytes 
into a fetal stage drove heart regeneration in mice [46]. 
In this report, we selected PAX8 + tubule epithelial 
cells in hUCs as the starting cells for reprogramming 
into intermediate mesoderm and kidney lineage cells, 
which provides a strategy for further optimization of 
kidney regeneration in  situ through partial reprogram-
ming. In addition, partial reprogramming allows ini-
tial cells to retain their genetic and epigenetic memory 
and regain their native phenotypes. Therefore, it is easy 
for us to generate mitochondria-rich kidney organoids 
from PAX8 + tubule epithelial cells that contain abun-
dant mitochondria. Previously, we used the same cells 
to generate iPSCs [13], neural progenitor cells [30], and 
cardiomyocytes [31], suggesting that hUCs possess high 
plasticity and are ideal candidates for cell fate transition. 
We propose a more robust platform to leverage the rela-
tive ease of isolating these cells and generate other func-
tional cell types from them for both disease modeling as 
well as therapy in the future.

Finally, since renal toxicity is a major concern during 
drug development, a panel of organoids from healthy and 
renal-compromised individuals may serve as an effective 
testing platform to evaluate drug safety in the pharma-
ceutical industry.
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Additional file 1: Fig. S1. Generation of 2D kidney organoids from hUCs 
of different donors. (A) Western blot for marker gene of the primitive 
streak, intermediate mesoderm, nephron progenitor, and segments of the 
nephron. PAX8 for tubule epithelial and nephron progenitor, CALBINDIN 
for distal tubule. (B) Gene expression analysis for markers of pluripotency 
(OCT4 and NANOG), endoderm (SOX17 and FOXA2), and ectoderm (SOX1 
and FOX6) during differentiation is presented. Embryonic stem cells 
(ESCs), defined as endoderm (DE), and neural progenitor cells (NPCs) are 
shown as the positive control. The relative expression of each transcript 
to GAPDH expression is presented as the mean ± SEM (n = 6). (C) 
Volunteer information and 2D U-iKOs induction from urine cells of healthy 
volunteers and CKD patients. (D) Representative bright-field images for 
one healthy volunteer (UC-001) and one patient (CKD, PUC-011). Scale 
bars, 250 μm. (E) Heatmap of markers and signature genes of hUCs, 
U-iIMPLCs, U-iNPCs, and U-iKOs for the volunteers in B. (F) Immunostain-
ing analysis of primitive streaks marker (T and TBX6) for U-iIMPLCs and 
nephron progenitor cells maker (PAX2 and SALL1) for U-iNPCs. Scale bars, 
50 μm. (G) Comparison of culture conditions of kidney organoid systems 
in personalized ways. M-iKOs, iPSC-induced organoids with protocol by 
Morizane; T-iKOs, iPSC-induced organoids with protocol by Takasato. Fig. 
S2. Cell fate changes during U-iKOs differentiation by RNA-seq. (A) Scatter-
plot showing the differentially expressed genes between hUCs (blue) and 
U-iIMPLCs (red) in the left panel, U-iIMPLCs (blue) and U-iNPCs (red) in the 
middle panel, U-iIMPLCs (blue) and U-iKOs (red) in the right panel during 
differentiation. (B) Gene ontology (GO) analysis for upregulated expressed 
genes (blue) and downregulated expressed genes of U-iIMPLCs compared 
to hUCs with p value at the bottom. (C) GO analysis for upregulated 
expressed genes (blue) and downregulated expressed genes of U-iNPCs 
compared to U-iIMPLCs with p value at the bottom. (D) GO analysis for 
upregulated expressed genes (blue) and downregulated expressed genes 
of U-iKOs compared to U-iIMPLCs with p value at the bottom. Fig. S3. 
ScRNA-seq profiling subpopulations in 3D U-iKOs. (A) Violin plot shows 
the detected genes, UMI count, and percentage of mitochondrial genes 
between 3D and 2D U-iKOs. (B) Heatmap indicating Pearson’s correlations 
on the averaged profiles among cell types between 3D and 2D U-iKOs. (C) 
UMAP plot of podocyte subcluster in U-iKOs, each dot represents one cell, 
with color code for each cluster. (D) Heatmap of differentially expressed 
genes between clusters in C selected signature genes and GO term in 
the right. (E) UMAP plot of proximal tubule subcluster in U-iKOs, each dot 
represents one cell, with color code for each cluster. (F) Heatmap of dif-
ferentially expressed genes between clusters in E selected signature genes 
and GO term in the right. (G) UMAP plot of the loop of Henle and distal 
tubule subcluster in U-iKOs, each dot represents one cell, with color code 
for each cluster. (H) Heatmap of differentially expressed genes between 
clusters in E selected signature genes and GO term in the right. Fig. S4. 
Characteristics of M-iKOs, T-iKOs, C-iKOs and fetal kidney. (A) Left: GO term 
of differentially expressed genes in M-iKOs with p value at the bottom. 
Right: Dotplot shows differentially expressed genes in M-iKOs. (B) Left: GO 
term of differentially expressed genes in T-iKOs with p value at the bot-
tom. Right: Dotplot shows differentially expressed genes in T-iKOs. (C) Left: 
GO term of differentially expressed genes in C-iKOs with p value at the 
bottom. Right: Dotplot shows differentially expressed genes in C-iKOs. (D) 
Left: GO term of differentially expressed genes in fetal kidney with p value 
at the bottom. Right: Dotplot shows differentially expressed genes in fetal 
kidney. (E) Immunostaining analysis of U-iKOs markers for kidney function. 
LRP2 (megalin), a multi-ligand endocytic receptor; SLC12A1 (NKCC2), a 
kidney-specific sodium-potassium-chloride cotransporter. Scale bars, 50 
μm. Fig. S5. Maturing organoids after CAM transplantation. (A) Methodol-
ogy for the implantation of 3D U-iKOs into CAM. Embryonic day, ED. (B) 
Macroscopic views of implanted U-iKOs were maintained in CAM for 6 
days. (C) H&E staining of implanted U-iKOs implanted in the CAM for 6 
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days. CAM blood vessels were indicated with black asterisks. Scale bars, 
100 μm. (n = 5). Fig. S6. 3D U-iKOs after FSK treatment. (A) Representative 
bright-field images of 3D U-iKOs treated with forskolin (FSK) for 4 days 
(day 24–28). Scale bars, 250 μm. (B) H&E staining of U-iKOs in the absence 
(control) or presence of FSK. Scale bars, 100 μm. (C) Immunofluorescence 
analysis of U-iKOs treated with FSK for 4 days. Scale bars, 50 μm. (D) Gene 
expression analysis for REN and AGT by RT-qPCR. The relative expression 
of each transcript to GAPDH expression is presented as the mean ± SEM 
(n = 4). (E) Gene expression analysis for REN, AGT, and PRCP by RNA-seq. 
(F) Scatterplot showing the up-regulated genes (red) and down-regulated 
genes (blue) between control and FSK treatment groups. (G) GO term of 
the up-regulated genes (red) and down-regulated genes (blue) in the FSK 
treatment group compared with the control group with p value at the 
bottom. (H) Gene expression analysis for specifical genes after cisplatin, 
gentamicin, and FSK treatment in Fig.7I. The relative expression of each 
transcript to GAPDH expression is presented as the mean ± SEM (n = 4).

Additional file 2: Table S1. Antibodies for immunostaining and western 
blot. Table S2. Primer list for RT-qPCR.
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