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Abstract 

Background: Zika virus (ZIKV) infection and ZIKV epidemic have been continuously spreading silently throughout 
the world and its associated microcephaly and other serious congenital neurological complications poses a signifi-
cant global threat to public health. Type I interferon response to ZIKV infection in host cells suppresses viral replication 
by inducing the expression of interferon-stimulated genes (ISGs).

Methods: The study aims to demonstrate the anti-ZIKV mechanism of PARP11. PARP11 knock out and overex-
pressing A549 cell lines were constructed to evaluate the anti-ZIKV function of PARP11. PARP11−/−, PARP12−/− and 
PARP11−/−PARP12−/− HEK293T cell lines were constructed to explain the synergistic effect of PARP11 and PARP12 on 
NS1 and NS3 protein degradation. Western blotting, immunofluorescence and immunoprecipitation assay were per-
formed to illustrate the interaction between PARP11 and PARP12.

Results: Both mRNA and protein levels of PARP11 were induced in WT but not IFNAR1−/− cells in response to IFNα 
or IFNβ stimulation and ZIKV infection. ZIKV replication was suppressed in cells expressed PARP11 but was enhanced 
in PARP11−/− cells. PARP11 suppressed ZIKV independently on itself PARP enzyme activity. PARP11 interacted with 
PARP12 and promoted PARP12-mediated ZIKV NS1 and NS3 protein degradation.

Conclusion: We identified ADP-ribosyltransferase PARP11 as an anti-ZIKV ISG and found that it cooperated with 
PARP12 to enhance ZIKV NS1 and NS3 protein degradation. Our findings have broadened the understanding of the 
anti-viral function of ADP-ribosyltransferase family members, and provided potential therapeutic targets against viral 
ZIKV infection.
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Introduction
Zika virus (ZIKV) was first isolated in 1947 in the Zika 
forest of Uganda from an infected rhesus macaque [1]. 
Since its discovery, ZIKV stayed relatively silent for 
almost 70 years until recent outbreaks in Pacific Islands 

and Brazil. By December 2015, 18 states of Brazil had 
reported autochthonous ZIKV transmission and large 
numbers of cases of infection and its associated diseases 
such as microcephaly were reported in 2015 and 2016 
[2–4]. On February 1, 2016, the World Health Organiza-
tion (WHO) declared ZIKV outbreak and its associated 
clinical manifestations as a Public Health Emergency 
of International Concern (PHEIC). ZIKV continues to 
develop and spread silently throughout the world in the 
form of asymptomatic infections. During September–
November 2018, the biggest Indian break was reported 
from Rajasthan and Madhya Pradesh states of India. Up 
to July 2019, 87 countries reported ZIKV transmission 

Open Access

Cell & Bioscience

*Correspondence:  yhmyt@hotmail.com; gcheng@mednet.ucla.edu
1 Center for Systems Medicine, Institute of Basic Medical Sciences, 
Chinese Academy of Medical Sciences and Peking Union Medical College, 
Beijing 100005, China
5 Department of Microbiology, Immunology and Molecular Genetics, 
University of California, Los Angeles, CA 90095, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6713-2783
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-021-00628-y&domain=pdf


Page 2 of 13Li et al. Cell Biosci          (2021) 11:116 

including 1,274,974 diagnosed cases in Brazil [5]. 
Recently, an Africa strain ZIKV infection was found in 
Brazil in addition to the prevalent Asia strain, suggest-
ing more attention should be paid to another outbreak of 
ZIKV epidemic [6].

ZIKV infection is asymptomatic in up to 80% adults, 
the remaining 20% infected adults are characterized by 
low fever, arthralgia, maculopapular rash accompanied 
by pruritis, and conjunctivitis. Moreover, ZIKV infec-
tion in adults was associated with Guillain–Barre syn-
drome and infection during pregnancy can cause infants’ 
microcephaly, intrauterine growth restriction and other 
birth defects [7–9]. Thousands of increased cases of fetal 
abnormalities, including microcephaly, were reported up 
to February 2016 in ZIKV infected areas [9–11]. At pre-
sent, vaccines or antivirals to treat ZIKV infection are 
unavailable [12–14]. Thereby, a comprehensive research 
for anti-ZIKV genes and more potential therapy targets 
are urgently needed to be identified.

Type I interferon (IFN-I) and interferon-stimulated 
genes (ISGs) constitute the vital part of innate immune 
system against virus infection in vertebrate. Viral infec-
tion induces the production of IFN-I and about 300 
ISGs which exert a broad-spectrum anti-viral effect. The 
potential of IFN-I and ISGs against ZIKV infection has 
been indicated [15–17]. Our previously work also iden-
tified CH25H and PARP12 as critical anti-ZIKV ISGs, 
which suppressed ZIKV infection and replication [18, 
19]. However, additional ISGs are likely involved in con-
trolling ZIKV replication. The family of poly-adenosine 
5’-diphosphate (ADP)-ribose polymerases (PARPs), also 
known as ADP-ribosyltransferases, mediates a unique 
translational modification called ADP-ribosylation by 
transferring of ADP-ribose from nicotinamide adenine 
dinucleotide  (NAD+) to target proteins [20–22]. Among 
the 17 PARPs expressed in human cells, several PARPs, 
such as PARP13, PARP9, PARP10, PARP14, PARP12 and 
PARP5, have been identified as ISGs and are involved in 
anti-viral response [23–25]. In an anti-ZIKV ISG screen-
ing, we reported mono ADP-ribosyltransferase PARP11 
with anti-ZIKV function but without detailed mechanism 
described [18]. On the other hand, Guo et  al. reported 
that PARP11 promotes vesicular stomatitis virus (VSV) 
and herpes simplex virus-1 (HSV-1) infection by inhib-
iting the interferon response [26]. These results indi-
cate a complex involvement of PARP11 in different viral 
infection.

In this work, we found that PARP11 was up-regulated 
in response to IFN-I stimulation and ZIKV infection, 
and acted as an anti-ZIKV ISG. Unlike PARP12, which 
suppressed ZIKV replication through PARP enzy-
matic activity dependent degradation of ZIKV NS1 and 
NS3 proteins, PARP11 suppressed ZIKV replication 

independent on its PARP enzymatic activity. Instead, 
PARP11 interacted and cooperated with PARP12 in sup-
pressing ZIKV replication, which provided a new insight 
on understanding the mechanisms responsible for differ-
ent PARP family members in viral infection.

Results
The expression of PARP11 can be induced by IFN and ZIKV 
infection
In our previously screening for ISGs with activity against 
ZIKV, we have identified PARP12 that suppresses ZIKV 
through PARP-dependent degradation of NS1 and 
NS3 viral proteins [18]. We also noticed that PARP11 
showed anti-ZIKV activity. PARP11 was reported as an 
ISG [26]. To characterize the induction of PARP11 by 
IFN-I, we stimulated WT and IFNα/β receptor subu-
nit 1 (IFNAR1)-deficient HEK293T and A549 cells with 
human IFN-I (IFN-α and IFN-β) and quantified the 
mRNA and protein levels of PARP11 by quantitative 
real-time PCR (qRT-PCR) and western blotting assay. 
We found that the  PARP11 mRNA and protein levels 
were induced by IFN-I in WT HEK293T and A549 cells 
but not in the corresponding IFNAR1−/− cells (Fig.  1a–
f). Similar to exogenous IFN treatment, ZIKV infection 
also induced PARP11 mRNA and protein expressions in 
WT but not in IFNAR1−/− A549 cells (Fig. 1g–i). These 
results indicate that PARP11 is an ISG induced by IFN-I 
and ZIKV infection.

PARP11 suppresses ZIKV replication in vitro
To further identify the anti-ZIKV activity, we generated 
both PARP11-knockout (Additional file 1: Fig. S1a–c) and 
PARP11-overexpressing (Additional file 1: Fig. S1d) A549 
cell lines. We found that ZIKV replication was suppressed 
in PARP11-overexpressing A549 cells as compared with 
the parental WT A549 cells (Fig. 2a, b). Conversely, ZIKV 
replication was enhanced in PARP11−/− cells (Fig. 2c, d). 
Furthermore, we monitored the growth kinetics of ZIKV 
in vector control, PARP11-overexpressing, WT and 
PARP11−/− A549 cells. The results also showed that the 
ZIKV replication rate was decreased in PARP11-over-
expressing cells and was increased in PARP11−/− cells 
(Fig. 2e, f ). Therefore, PARP11 is an anti-ZIKV ISG that 
may play an important role in innate immune defense 
against ZIKV replication.

PARP11 suppresses ZIKV independent on the regulation 
of IFNAR1 protein level
A recent report indicated that PARP11 inhibited the 
interferon response by reducing the protein level of 
IFNAR1 [26] to promote VSV and HSV-1 replication.

In our screening and validation results, however, 
we found that PARP11 suppressed ZIKV replication 
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(Fig.  2a–f). To test whether PARP11 suppressed ZIKV 
by regulating protein level of IFNAR1, we infected WT 
A549 cells with VSV and ZIKV and detected protein level 
of IFNAR1 by Western blotting. The result showed that 
ZIKV infection did not obviously change IFNAR1 protein 
level, while VSV infection decreased IFNAR1 protein 
level significantly (Fig. 3a, b). We also compared the pro-
tein levels of IFNAR1 in WT and PARP11−/− A549 cells 
infected with VSV and ZIKV. While significant IFNAR1 

downregulation was observed in WT and PARP11−/− 
A549 cells in response to VSV infection, the IFNAR1 pro-
tein level showed no obviously change in both WT and 
PARP11−/− A549 cells upon ZIKV infection (Fig. 3c, d). 
On the other hand, we detected a strong increase in pro-
tein ADP-ribosylation in WT but not PARP11−/− cells 
upon ZIKV infection (Fig.  3e, f ). These results indicate 
that PARP11 may suppress ZIKV replication by induc-
ing either host or viral protein ADP-ribosylation in ZIKV 
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Fig.1 The expression of PARP11 can be induced by IFN and ZIKV infection. a, b qRT-PCR analysis of PARP11 expression in WT and IFNAR1−/− 
HEK293T (a) or A549 (b) cells treated with recombinant human IFN-α (1000 U/mL), IFN-β (20 ng/mL) and control for 24 h. c, d Western blotting 
analysis of PARP11 expression in WT and IFNAR1−/− HEK293T (c) or A549 (d) cells treated with recombinant human IFN-α (1000 U/mL), IFN-β (20 ng/
mL) and control for 12 and 24 h. e Densitometry analysis of the data in (c). f Densitometry analysis of the data in (d). g qRT-PCR analysis of PARP11 
expression in WT and IFNAR1−/− A549 cells infected with ZIKV for the indicated times. h Western blotting analysis of PARP11 expression in WT and 
IFNAR1−/− A549 cells infected with ZIKV for the indicated times. i Densitometry analysis of the data in (h). qRT-PCR (a, b and g) and densitometry 
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infected cells instead of regulating the IFNAR1 protein 
level.

PARP11 suppresses ZIKV independent on its PARP enzyme 
activity
PARP11 contains WWE domain at the N terminus and 
PARP domain at the C terminus. The WWE domain is 
a common interaction module that participates in both 
ubiquitination and ADP-ribosylation [27]. The PARP 
domain contains the PARP enzyme activity, which medi-
ates the posttranslational modification of target proteins 
[28, 29]. The  Gly205 within the PARP domain of human 
PARP11 binds the amide group of  NAD+, which is essen-
tial for PARP enzyme activity. To identify whether the 
PARP enzyme activity of PARP11 is responsible for the 
anti-ZIKV function, we constructed PARP11 deletion 
and PARP enzyme activity lost (PARP11 G205A) mutants 
(Fig.  4a). The expression and expected protein size of 
these mutants were verified by Western blotting (Fig. 4b). 

HeLa cells were transfected with these mutants and sub-
sequently infected by ZIKV to determine how the dif-
ferent domains and PARP enzyme activity affected viral 
infection. Full-length WT or enzyme inactive PARP11 
strongly suppressed ZIKV replication, whereas PARP11 
deletion mutants lacking the WWE domain or the PARP 
domain showed no suppression on ZIKV replication 
(Fig.  4c). These results indicate that PARP11 suppresses 
ZIKV replication independent on its PARP enzyme 
activity.

PARP11 promotes PARP12‑mediated ZIKV NS1 and NS3 
protein degradation
In our previous work, we identified PARP12 sup-
pressed ZIKV through PARP-dependent degrada-
tion of NS1 and NS3 viral protein. The PARP enzyme 
activity of PARP12 is essential for ZIKV suppression. 
However, in this work, we found that PARP11 sup-
pressed ZIKV independent on its PARP enzyme activity 
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but can regulate protein ADP-ribosylation in ZIKV 
infected host cells. To test the relationship between 
PARP11 and PARP12, we co-transfected His-NS1 and 
NS3 with HA-PARP12, YFP-PARP11 or Flag-PARP13 
as control into WT, PARP11−/−, PARP12−/− and 

PARP11−/−PARP12−/− HEK293T cells. Compared to 
PARP12 co-transfected with vector group, PARP12 
co-transfection with PARP11 but not PARP13 fur-
ther reduced the abundance of NS1 and NS3 proteins 
(Fig. 5a, b). We also detected the impacts of PARP11 on 
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the ZIKV-encoded NS1 and NS3 protein levels in ZIKV 
infected cells and found that the endogenous NS1 and 
NS3 protein levels were decreased in PARP11-overex-
pressed cells and were increased in PARP11−/− cells 
(Fig.  5c–f ). These results indicates that PARP11 can 
cooperate with PARP12 in -mediating ZIKV NS1 and 
NS3 degradation and may play an important role in 

controlling the levels of NS1 and NS3 in ZIKV infected 
cells.

PARP11 promotes PARP12‑mediated NS1 and NS3 
degradation independent on its PARP enzyme activity
To further confirm the involvement of PARP11 in 
PARP12-mediated NS1 and NS3 degradation, we 
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Page 7 of 13Li et al. Cell Biosci          (2021) 11:116  

co-transfected His-NS1 or NS3 with increasing amount 
of HA-PARP12 plasmids in WT, PARP11−/−, and 
PARP12−/− HEK293T cells. Compared to WT HEK293T 
cells, PARP12 showed weaker ability to degrade NS1 and 
NS3 in PARP11−/− HEK293T cells (Fig.  6a, b). When 
PARP11 was transfected back, NS1 and NS3 degrada-
tions mediated by PARP12 were increased (Fig.  6c, d). 
We also examined the PAPR11 mutants on NS1 and NS3 
degradation when co-transfected with HA-PARP12 into 
WT, PARP11−/−, PARP12−/− and PARP11−/−PARP12−/− 
HEK293T cells. Only the full-length WT and PARP 
enzyme lost mutation enhanced NS1 and NS3 degrada-
tion in synergy with PARP12, PARP11 deletion mutants 
lacking the WWE domain or the PARP domain did not 
show impact on enhancing PARP12-mediated NS1 and 
NS3 degradation (Fig.  6e, f ). Interestingly, we observed 
that PARP11 enzyme lost mutant degraded NS1 and NS3 
less efficient than WT PARP11 in PARP11−/− HEK293T 
cells (Fig. 6e, f ). Together, these results show that PARP11 
promotes the degradation of ZIKV NS1 and NS3 proteins 
in synergy with PARP12.

PARP11 suppresses ZIKV replication mostly dependent 
on PARP12
To further determine whether PARP11 suppressed 
ZIKV dependent upon PARP12, we compared the rep-
lication of ZIKV in WT and PARP12−/− A549 cells in 
the presence or absence of PARP11 over expression. 
The results showed that although ZIKV replication was 
reduced in both WT and PARP12−/− A549 cells upon 
PARP11 overexpression PARP11 seemed to be more 
effective in inhibiting ZIKV replication in PARP12−/− 
A549 cells as compared with WT A549 cells (Fig. 7a–c). 
We then checked whether the degradations of NS1 and 
NS3 mediated by PARP11 WT and PARP11 enzyme 
lost mutant were also impacted by PARP12. Western 
blot analysis revealed that PARP11 WT and PARP11 
enzyme lost mutant can still degrade NS1 and NS3 in 
PARP12−/−HEK293T cells but at an efficiency signifi-
cantly lower than that in WT HEK293T cells (Fig. 7d–g). 
These results suggest that PARP11 suppresses NS1 and 

NS3 degradation and ZIKV replication mostly dependent 
on the existence of PARP12.

PARP11 interacts and co‑localizes with PARP12
To elucidate the mechanism by which PARP11 sup-
pressed ZIKV in cooperation with PARP12, we firstly 
examined the interaction between PARP11 and PARP12. 
We demonstrated that PARP11 could interact and co-
localize with PARP12 protein by co-immunoprecipi-
tation and immunofluorescence assay (Fig.  8a, b). To 
further identify the protein module of PARP11 that 
interacted with PARP12, we co-transfected HEK293T 
cells with HA-PARP12 and EGFP-PARP11 WWE and 
PARP domain expressing plasmids and performed co-
immunoprecipitation assay with HA-tagged agarose 
beads. Full-length PARP12 interacted with the WWE 
domain of PARP11 but not the PARP domain (Fig.  8c). 
This result is in line with the function of WWE domain as 
a common interaction module that participates in both 
ubiquitination and ADP-ribosylation. We further con-
structed HA tagged PARP12 mutant which expressed 
ZnF, WWE and PARP domain of PARP12 (Fig. 8d), and 
performed immunoprecipitation assay to examine which 
domain of PARP12 interacted with PARP11. The result 
indicates that PARP12 interacts with PARP11 through 
its WWE domain (Fig. 8e). We then performed immuno-
precipitation assay to examine which domain of PARP12 
interacted with ZIKV NS1 protein, and found that 
PARP12 interacted with NS1 through its PARP domain 
(Fig.  8f ). These results demonstrate that PARP11 and 
PARP12 interact and cooperate with each other on ZIKV 
suppression.

Discussion
Although the ZIKV outbreak happened in 2015–2017, 
ZIKV continues to develop and evolve in a form of 
asymptomatic infectious. According to a previous report, 
researchers firstly detected the appearance of the ZIKV 
Africa lineage in Brazil, indicating the risk of a new epi-
demic [6]. Research on the pathology of ZIKV to explore 
for available means on epidemic control and associ-
ated disease treatment is still urgently needed. In our 

Fig. 6 PARP11 promotes PARP12-mediated NS1 and NS3 degradation independent on its PARP enzyme activity. a Western blotting analysis of cell 
lysates from WT, PARP11−/− and PARP12−/− HEK293T transfected with His-NS1 or NS3 and increasing amounts of HA-PARP12 plasmids (0, 250, 500 ng). 
b Densitometry analysis of the data in (a). c Western blotting analysis of cell lysates from WT, PARP11−/− and PARP12−/− HEK293T transfected with 
HA-PARP12, YFP-PARP11 and His-NS1 or His-NS3 plasmids. d Densitometry analysis of the data in (c). e Western blotting analysis of cell lysates 
from WT, PARP11−/−, PARP12−/− and PARP11−/−PARP12−/− HEK293T transfected with HA-PARP12, His-NS1/NS3 and FL PARP11 and mutant constructs 
plasmids. FL: full length; WWE: WWE domain; PARP: Poly (ADP-ribose) polymerase domain. PARP PM: PARP domain with point mutation to inactivate 
PARP enzyme activity. PM: PARP11 full length protein with point mutation to inactivate PARP enzyme activity. f Densitometry analysis of the data in 
(e). Western blotting results (a, c and e) are presentative of three independent experiments. Densitometry analysis data (b, d and f) are mean ± SEM 
pooled from three independent experiments. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, and ***P < 0.0001 by Student’s t test.

(See figure on next page.)
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previously work, we identified PARP12 with anti-ZIKV 
function and the detailed mechanism was provided [18]. 
Here, we found that PARP11 suppresses ZIKV in coop-
erated with PARP12 (Fig.  5a–f). Our studies describe a 
novel mechanism of PARP11 in viral restriction that is 
quite different from the previous report indicating that 
PARP11 promotes VSV and HSV replication by degrad-
ing IFNAR1 and inhibiting IFN signaling pathway [26] as 
we observed no significant change of IFANR1 at protein 
level in ZIKV infected A549 WT and PARP11-deficency 
cells (Fig. 3a–d). We speculated the different function of 
PARP11 may be a result from the characteristic of differ-
ent virus species.

In this work, we identified PARP11 as a new anti-
ZIKV ISG that suppresses ZIKV replication in coopera-
tion with PARP12. Several PAPRs have been found with 
anti-viral functions dependent or independent on their 
PARP enzyme activities. PARP12, for an example, can 

utilize its PARP enzyme activity to poly ADP-ribosylate 
ZIKV NS1 and NS3 proteins which promotes their sub-
sequently ubiquitination and degradation by protea-
some [18]. PARP13, also known as ZnF antiviral protein 
(ZAP), inhibits various viruses by directly degrading viral 
mRNA or protein independent of its PARP enzyme activ-
ity [30]. PARP11 was reported as a novel enzyme impor-
tant for proper sperm head shaping and a potential factor 
involved in idiopathic mammalian teratozoospermia. In 
this process PARP11 exhibits mono ADP-ribosylation 
activity which ADP-ribosylates itself and is essential for 
co-localization of PARP11 with the nuclear pore compo-
nents [31]. Other research also indicated that the cellu-
lar location of PARP11 is regulated by its PARP catalytic 
activity [32]. In this work, we found that PARP11 sup-
presses ZIKV independent on its PARP enzyme activity 
(Fig. 4a–c) but is still involved in increased protein ADP-
ribosylation in ZIKV infected host cells (Fig.  3e, f ). We 

c Cell lysates
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Fig. 7 PARP11 suppresses ZIKV mostly dependent on PARP12. a–c PARP11-overexpressing or control vector-transfected WT and PARP12−/− A549 
cells were infected with ZIKV. Viral accumulation after 48 h in the culture supernatants (a and b) and cell lysates (c) were measured by plaque assay 
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showed that the existence of PARP11 enhances the NS1 
and NS3 degradation mediated by PARP12. In addition, 
the anti-viral function of PARP11 was largely impaired in 
the absence of PARP12, indicating that PARP11 inhibits 
ZIKV replication dependent on the existence of PARP12 
(Fig.  7a–c). These results suggest that PARP11 cooper-
ates with PARP12 in ZIKV protein degradation through 
enhancing NS1 and NS3 degradation. We also noticed 

that PARP11 can suppress ZIKV replication and NS1 
and NS3 protein degradation in the absence of PARP12, 
although at a much lower efficiency than that in the 
presence of PARP12 (Fig.  7d–g). So, other unrevealed 
mechanism might be involved in the antiviral activity of 
PARP11 independent of PARP12. Thus, more attention 
should be paid to the anti-viral role of PARP family pro-
teins, especially PARP11 and PARP12.
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We further identified that the WWE domains of both 
PARP11 and PARP12 are involved in their interaction 
(Fig.  8c). Considering that PARP12 ADP-ribosylates 
NS1 and NS3 dependent on its PARP enzyme activity, 
PARP12 may work as an intermediate that interacts with 
NS1 and NS3 proteins by its PARP domain and interacts 
with PARP11 by its WWE domain. PARP11, NS1 and 
NS3 proteins, and PARP12 constitute a degradation com-
plex in which PARP11 assists PARP12-mediated ADP-
ribosylation in an unknown mechanism.

In conclusion, our work highlights a novel anti-ZIKV 
role of PARP11 and its mechanism responsible for 
enhancing PARP-12-mediated NS1 and NS3 degradation. 
As more and more PARP inhibitors have been developed, 
further studies on the antiviral activities of different 
PARP family members will likely provide additional treat-
ments for diseases associated with viruses such as ZIKV.

Materials and methods
Virus and cells
ZIKV strain GZ01/2016 (Genbank Accession Number 
KU820898) and VSV virus was used at a multiplicity on 
infection (MOI) of 0.1 in this study, except where indi-
cated otherwise [33]. The IFNAR1−/− HEK293T and 
A549 cell lines were generated as described [19]. A549, 
BHK-21, Vero, HeLa and HEK293T cells were purchased 
from America Type Culture Collection and cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) (37 °C, 5% 
 CO2) supplemented with 10% fetal bovine serum (FBS), 
100U/mL penicillin and 50 μg/mL streptomycin.

Plaque assay
BHK-21 cells were seeded in a 12-well plate for 12 h. Cells 
were washed with PBS once and infected with virus sam-
ples for 1  h. The culture supernatant was aspirated and 
replaced with DMEM containing 1% low-melting aga-
rose and 2% FBS. Viral plaques were stained and counted 
4 days after infection. The titer of ZIKV was quantified by 
plaque assay and normalized to control.

DNA constructs and stable cell line generation
pMOI-GFP and pMOI-PARP11 (Homo sapiens) expres-
sion plasmids were purchased from GeneCopoeia 
and described previously [34]. The viral RNA of the 
GZ01/2016 strain was isolated and used in reverse tran-
scription PCR experiments to obtain the complementary 
DNA (cDNA) sequence of ZIKV nonstructural NS1 and 
NS3 proteins. ZIKV NS1 and NS3 genes were cloned 
into the pcDNA6/V5-His expression vector (Invitro-
gen) using standard molecular techniques and verified 
by sequencing. DsRed-PARP11, EGFP-PARP12, Flag-
PARP11, HA-PARP12, HA-PARP12 ZnF, HA-PARP12 
WWE, HA-PARP12 PARP, EGFP-PARP11 WWE 

domain, EGFP-PARP11 PARP domain, YFP-PARP11, 
Flag-PARP13 and GFP-PARP11 mutants were cloned 
using standard molecular cloning and oligonucleotide 
mutagenesis methods. To create a stable cell line for 
PARP11 expression, PARP11 was cloned into the pMX-
sIG-IgkFLAG vector and co-transfected into HEK293T 
cells with VSV glycoprotein and pCpG helper plasmids. 
48 h after transfection, the culture supernatant was col-
lected and added into WT or PARP12−/− A549 cells for 
infection. The cells were collected 72  h after infection, 
and the PARP11-overexpressing cells were then sorted by 
fluorescence-activated cell sorting (FACS).

Western blotting
All cells were treated as indicated and lysed with lysis 
buffer [50 mM tris–HCl (pH 7.5), 150 mM NaCl, 5 mM 
EDTA, 1% NP-40, 1 mM PMSF, and 1 × protein inhibitor 
(Roche)]. The cell extracts were immunoblotted with the 
indicated antibodies to measure the level of the expressed 
proteins. Mouse anti-β-actin (ZSGB-Bio), rabbit anti-
GFP (Abcam), rabbit anti-PARP11 (Finetest), rabbit 
anti-IFNAR1(Abcam), mouse anti-poly (ADP-ribose) 
(GeneTex), rabbit anti ZIKV NS1 (Genetex), rabbit anti-
ZIKV NS3 (Genetex), mouse anti-HA, mouse anti-His, 
and mouse anti-Flag tag antibodies (Sigma-Aldrich) were 
used for detection at the appreciated dilutions.

Co‑immunoprecipitation assay
HEK293T cells were transfected with the indicated 
plasmids. 30  h after transfection, protein was extracted 
using solution A [50  mM tris–HCl (pH 7.5), 150  mM 
NaCl, 5  mM EDTA, 1% Triton-X100, 1  mM phenyl-
methylsulfonylfluoride (PMSF), and 1 × protein inhibitor 
(Roche)]. An aliquot of the extracts was immunoblotted 
with the indicated antibodies. The remaining extracts 
were immunoprecipitated using Sepharose beads bound 
to anti-Flag, anti-HA, anti-His or anti-GFP antibod-
ies (Sigma-Aldrich) at 4  °C overnight. After washing 
the Sepharose beads four times with solution B [50 mM 
tris–HCl (pH 7.5), 150  mM NaCl, 5  mM EDTA, 0.2% 
Triton-X100, and 1 mM PMSF], proteins were eluted by 
heating the beads to 98  °C in 1 × SDS-polycrylamid gel 
electrophoresis loading buffer [50  mM Tris–HCl (pH 
6.8), 2% (V/V) SDS, 6% (V/V) glycerol, and 2% (V/V) 
β-mercaptoethanol]. The eluted was analyzed by Western 
blotting with the indicated antibodies.

Gene knockout by the CRISPR/Cas9 system
To knockout PARP11 and PARP12 in A549 and HEK293T 
cell lines, two small guide RNAs (SgRNAs) (~ 100  bp 
gap sequence) targeting the PARP11 and PARP12 genes 
were designed and cloned into sgRNA expression vec-
tors under the control of human U6 promotor. A549 or 
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HEK293T cells were transfected with sgRNAs and Cas9 
expression plasmids, followed by puromycin selection, as 
described previously [35, 36]. Sigle clones were isolated by 
FACS and confirmed by PCR genotyping and sequencing.

RNA isolation, reverse transcription, and PCR
Total RNA from cells or viruses was extracted with the 
PureLink RNA Extraction kit (Thermo Fisher Scientific). 
Viral RNA copies were measured by qRT-PCR [37] with 
the One Step PrimeScript RT-PCR kit (Takara). ZIKV 
primers and TaqMan probes were described previously 
[38]. Primers used to amplify corresponding genes were 
obtained from PrimerBank (http:// pga. mgh. harva rd. edu/ 
prime rbank/). SYRB Green qPCR mix (TransGen Bio-
tec) was used to analyze mRNA levels on an ABI 7500 
(Applied Biosystems) analyzer.

Immunofluorescence staining and confocal imaging
Vero cells were seeded in a confocal dish (Solarbio) and 
transfected with EGFP-PARP12 and DsRed-PARP11 
plasmids. After 24  h, cells were fixed with 0.4% para-
formaldehyde for 15  min and permeabilized in 0.2% 
Triton-X100 for 15  min at room temperature. The cells 
were washed three times with PBS supplemented with 
0.05% Tween-20. Nuclei were stained with 4′6-diamid-
ino-2-phenylindole (Thermo Fisher Scientific). Cells were 
imaged on a LSM700 (Carl Zeiss) confocal microscope, 
and the images were analyzed with ImageJ software.

Statistical analysis
All data were analyzed using Prism software (Graph-
pad 8.0). Statistical evaluation was performed by two-
way Student’s t test. Data are mean ± SEM, and P values 
are indicated by ns, not significant, *P < 0.05, **P < 0.01, 
***P < 0.001 and ****P < 0.0001. All cellular experiments 
were repeated at least three times.
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