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Abstract 

Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast 
agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombo-
sis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer 
patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, 
exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized 
encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate 
through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery 
system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and 
medicines.
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Introduction
Many drugs and medicines are susceptible to degra-
dation, which makes it challenging to formulate them 
and deliver them to specific targets [1, 2]. The chem-
istry of these drugs makes the process even more chal-
lenging because it can lead to nonspecific side effects, 
interrupt normal physiology of intracellular receptors, 
damage healthy tissues, and result in unguided delivery 
[2–4]. Additionally, these drugs have reduced permea-
tion across biological barriers, affinity towards unspecific 
sites, and a tendency to unload chemicals to multiple 
healthy targets [3]. To overcome these shortcomings, 
microbubbles deliver their cargo to molecular sites of dis-
ease while being tracked in real time by the latest simula-
tion of artificial intelligence [3, 5, 6].

AI could potentially enhance the effectiveness of micro-
bubble technology [6–8]. Bubbles guided by AI, and the 

medicine they encapsulate, have the power to improve 
the visualization of cardiac disease, which will give new 
life to the field of echocardiography or focused ultra-
sound imaging of the heart [9–12]. They are routinely 
used to evaluate myocardial perfusion and heart function 
and in kidney dialysis [11, 12]. Clinically, microbubbles 
are established for routine screening of a range of dis-
eases, including cancer, cancerous lesions, inflammatory 
processes, cardiovascular pathologies, and diseases asso-
ciated with aging, Table 1 [12–15].

Molecular imaging is an advanced way for decoding the 
biological processes to visualize and reveal the cellular 
events at molecular level [16, 17]. For example, quantum 
dots are photostable for longer duration and enhance the 
imaging of deep tissues [17]. Similarly, the fluorescence 
imaging with indocyanine green based system is valu-
able for monitoring of surgical procedures [17, 18]. Mag-
netic resonance imaging is clinically applied to visualize 
and expose the structural and pathological changes [19, 
20]. Combination of different nanoparticles and con-
trast agents makes the field of molecular imaging more 
appealing for clinical applications [21–23]. The pro-
cess of molecular imaging can be clinically improved by 
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designing and engineering of new class of contrast agents, 
which are more sensitive, targeted, non-toxic and precise 
for molecular identification [24–26]. Such as monoclonal 
antibodies, nanoprobes, quantum dots, molecular dyes, 
and other targeting signatures are routinely attached to 
the surface of microbubble and extracellular vesicles for 
clinical monitoring of treatment process [5, 14, 21, 22, 
26, 27]. Therapeutic drugs and medicines include growth 
factors, antibodies, peptides and recombinant proteins; 
microbubbles increase the effectiveness, specificity, and 
potency of these therapeutics [28–30].

The role of guided microbubbles in different 
diseases
Conventional medicine are known for their shortcom-
ings such as toxicity to healthy tissues, not very specific 
to the targets, do not have the ability to cross the blood 
brain barrier, and have other side effects which restrict 
their applications [9, 31, 32]. New technologies have sig-
nificantly improved the perspective of precision medi-
cine [33–35]. The smart approach of using microbubbles 
loaded with degradable loaded drugs have the potential 
to deliver the medicine precisely to the targets where it 
is needed [36, 37]. Precision medicine (such as guided 
microbubbles) use the high throughput knowledge and 
artificial intelligence to enhance the process of clinical 
diagnosis and treatment [38, 39]. Moreover, the preci-
sion approach can also be used for preventive and sur-
veillance measures of diseases. treatment efficiency and 
real time monitoring of drugs [39, 40]. Microbubbles 
loaded with drug are guided carriers that deliver medi-
cine to targeted sites [2, 30, 41]. These bubbles increase 
the localized drug concentration at the site of disease, 
and mimicking the toxicity and unwanted delivery to 
healthy tissues and surrounding microenvironment [41, 
42]. Ultrasound-guided microbubbles are routinely used 
in the treatment of many diseases’ such as cardiovascular 
disorders including thrombolysis, in the clinical imaging 
of tumor sites, and diagnosis of cancer and therapeutics 
[42–44]. Studies have shown that microbubbles loaded 
with drugs (such as growth factors, precision medicine, 
tissue plasminogen activator (tPA), regenerative mol-
ecules, and imaging probes) have improved the clini-
cal outcome in different diseases [45, 46]. Microbubbles 
loaded with tPA successfully dissolved blood clots pre-
cisely at the tissue target sites, and bubbles loaded with 
regenerative cargo improved the healing effects in tissues 
repair process [42–44, 47]. Technology-guided micro-
bubbles are well studied for targeted release of drugs at 
inflammatory and tumor sites Fig. 1 [3, 48]. Monoclonal 
antibodies, cytokines, tumor inhibitors, chimeric antigen 
receptor T cells therapies, and clinical chemotherapeutic 
drugs (for example, 5-fluorouracil and doxycycline) have 

successfully been loaded into microbubbles and applied 
in the treatment of neck, breast, pancreatic, ovarian, and 
hepatocellular carcinoma [49–51]. Ultrasound-targeted 
microbubbles have already been validated as an effective 
method for delivering microRNAs to tumor sites in clini-
cal treatment of human malignancies [38, 49].

AI could be used for medical imaging, patient moni-
toring, and for the targeted release of drugs at the dam-
aged sites. It will enhance the therapeutic efficiency by 
increasing the localized drug concentration at diseased 
sites [8]. Microbubbles can cross the blood–brain bar-
rier, meaning drugs can reach any brain cell in a targeted 
manner [8]. Microbubbles loaded with glial cell-derived 
neurotrophic factor (GDNF) and brain-derived neuro-
trophic factor (BDNF) have been shown to specifically 
accelerate the cell survival of dopaminergic neurons and 
protect neurons in treatment of many diseases, such as 
stroke, Alzheimer’s, Parkinson’s disease, seizure disor-
ders, brain or spinal injuries, and other neurological dis-
orders [8, 15, 44, 52–54]. Ultrasound has the potential 
for activation of drug release at targeted regions, and 
has the ability of precise-imaging to identify the diseased 
sites, thus enhancing the implications of microbubbles in 
treatment of different diseases [44, 55]. This technology 
includes the potential to monitor the drug and treatment 
response in real time, which increases the effectiveness of 
this approach Figs. 1, 2 and 3.

Technology and microbubbles
The technology behind the smart design of microbub-
bles has attracted great attention due to its wide appli-
cation in many fields of science and technology [21, 56]. 
The nano-sized microbubbles are negatively charged 
[56, 57]. Particles with positive charges, known as free 
radicals, engulf electrons from healthy cells to neutralize 
their own charge, causing cellular damage [15, 58, 59]. In 
contrast, negatively charged bubbles fight free radicals 
to improve the health of damaged cells and detoxify the 
inflammatory fluids in diseased tissue [15, 60].

Targeted drug delivery Cardiovascular diseases

Blood brain barrier disrup�on

Tumor detec�on

Thrombolysis

Permeability

Inflamma�on
Imaging

Fluorescent
probe

Sensor

Probe

Tissue targe�ng probe

Fig. 1 Role of guided microbubbles in drug delivery and imaging 
and in different diseases
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Microbubbles newly designed through biomedical 
engineering and nanomaterials approaches are crucial 
for intracellular delivery of proteins, drugs, growth fac-
tors, and peptides, Fig. 2 [9, 30, 42]. They may revolution-
ize the whole biopharmaceutical drug industry [14, 58]. 
Although technological breakthroughs have been made 
in the development, monitoring, and tracking of drugs 
by artificial intelligence and in the delivery of biophar-
maceutical drugs, challenges and unanswered questions 
remain [61]. The medicine in the bubbles can target both 

extracellular and intracellular targets and guide the local-
ized drug delivery to specific sites [61].

Medicine and the machine
Artificial intelligence (AI)–based technologies have the 
potential to transform the healthcare industry by deriv-
ing innovative approaches to the discovery of drugs, 
Fig. 3 [5, 61]. Examples of innovation through AI range 
from self-driving cars to pattern- and image-recognition 
tools to clinical diagnostics that allow expedited drug dis-
covery, earlier detection of disease, more precise diagno-
sis, identification of new biomarkers, and development of 
personalized diagnostics and therapeutics [6, 7, 10, 62]. 
AI has the power to treat, diagnose, cure, mitigate, or 
prevent disease or other critical or serious conditions [29, 
61, 63]. Recent studies have shown that AI can expedite 
diabetic retinopathy and eye scan [29, 61, 63, 64]. AI has 
incredible pattern-recognizing abilities within big data 
and thus holds the potential to solve many key clinical 
challenges [64]. Leveraging AI with microbubble technol-
ogy may expedite and enhance early detection of disease 
and patient care [5, 62].

Medicine in microbubbles and the blood–brain 
barrier
The blood–brain barrier (BBB) is responsible for pro-
tection against circulating toxins, preventing harmful 
pathogens from entering the brain [44, 65]. The defen-
sive wall of the BBB prevents brain infections, but it also 
blocks medicines that could treat brain diseases, neuro-
logical disorders, and neurodegenerative diseases [44, 65, 
66]. This protective wall presents an obstacle for most of 
the available drugs in the market [66, 67]. Medicine in 
microbubbles, in contrast, can reach and open the BBB 
to target the disease site effectively instead of circulat-
ing randomly in the system [67, 68]. The brain is the only 
organ known to have its own security system; however, 
medicine in the bubbles breaks the defensive wall of the 
BBB and allows lifesaving drugs to reach their targets to 
repair the injured or diseased brain [68]. Usually drugs 
are chemicals, and the brain senses these harsh mole-
cules and blocks its defensive door using the BBB; how-
ever, medicines in bubbles are difficult to interpret as 
chemicals or dangerous enemies as they are encapsulated 
in a shell, Figs. 1, 2 and 3 [15, 53, 66, 68].

Conclusion
Microbubbles have the potential to protect their cargo 
from degradation, restrict the drug release to disease 
sites, and prevent nonspecific drug delivery to healthy 
tissues [69, 70]. Medicine in bubbles enhances targeted 
drug delivery, tumor targeting, ultrasound imaging, and 
intracellular drug release [7, 71]. These microbubbles 

Therapeu�c agents

Nutrients Cellular factors

miRNAs

Drugs

Medicine

Growth factors

Microbubbles loaded with therapeu�cs 

Fig. 2 Microbubbles and loaded therapeutic cargo

Telltale biomarkers

Precision health

Evidence based medicine

Guided precession medicine

Clinical trials

Monitoring

Ar�ficial intelligenceDrug development

Fig. 3 Guided microbubbles and technology
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can be used for the delivery of oxygen in stroke patients, 
and delivery of immune cells in those patients who has 
weak immune system [54, 72, 73]. AI-powered capabili-
ties, including data integration and interpretation, are 
fundamental for clinical transformation of microbubbles 
to enhance treatment efficacy [7, 38]. Leveraging technol-
ogy will enhance the ability of microbubbles and extra-
cellular vesicles for oxygen release to energizes cells and 
stimulates the immune system against different diseases 
[74, 75]. Ultrasound guided microbubbles can be used for 
opening blocked arteries, for increasing the permeability 
of blood brain barrier and drug delivery to those tissues 
which are otherwise difficult target for conventional drug 
delivery [76–78].

The delivery of medicine in bubbles has some limita-
tions, such as undesired shell cracking due to acoustic 
pressure, limited capacity for drug loading and cavita-
tion in the ultrasound field [30, 61]. The biostability of 
microbubbles is poor in some organs, less biocompat-
ible, structurally unstable, and limited circulation time 
in certain tissues. Sometimes these bubbles have dif-
ficulty reaching deep and hard ossified tissues [30, 38]. 
The safety, ethics, effectiveness, and functionality of the 
process should be considered to improve the develop-
ment of next generation of microbubbles with innova-
tive engineering approaches to enhance the drug loading 
capacity of bubbles [21, 79–81]. Designing of bubbles for 
precise imaging should revolutionize the field of molecu-
lar imaging and precision medicine for treatment of can-
cer, aging, cardiovascular and neurological diseases [13, 
30, 82].

Microbubbles are inert, nonreactive vesicles which 
makes them ideal for molecular imaging, bypassing 
microcirculation, and ideal cargo for conventionally chal-
lenged targets [83–85]. Although there are still some 
challenges in the clinical translation, but scientists are 
expecting that newly designed microbubbles can be lev-
eraged to AI methods and techniques [86, 87]. These 
emerging bubbles can be used to train neural networks 
and other tissues and to monitor drugs for real time 
imaging and precise treatment [87–89]. Microbubbles 
with integrated molecular sensor-probes have the ability 
to distinguish contrast agents and differentiate healthy 
versus diseased sites [90, 91]. The technological plat-
form of microbubbles applications should be upgraded 
with AI integration for more safer, and real-time tracking 
of drugs in clinical translation [92]. Further research of 
guided microbubbles is needed to explore the field drug 
delivery. The field of bioengineering for designing smart 
microbubbles will revolutionize this technology further, 
which has already been shown its role in real time molec-
ular imaging and precise treatment of different diseases 
such as cardiovascular and neurological disorders [93, 

94]. The integration of AI and other technologies in the 
field of microbubbles will accelerate the development of 
strategies for detection, prevention, diagnosis, treatment, 
and cure.
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