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Ubiquitin and ubiquitin-like molecules 
in DNA double strand break repair
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Abstract 

Both environmental and endogenous factors induce various forms of DNA damage. DNA double strand break (DSB) 
is the most deleterious DNA lesion. The swift initiation of a complexed network of interconnected pathways to repair 
the DNA lesion is essential for cell survival. In the past years, the roles of ubiquitin and ubiquitin-like proteins in DNA 
damage response and DNA repair has been explored. These findings help us better understand the complicated 
mechanism of DSB signaling pathways.
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The human genome suffers either exogenous or endog-
enous damages all the time. Immediate and proper DNA 
damage response is essential for guarding genomic sta-
bility. Upon DNA damage, apical sensors are activated 
and transduce the signals to the downstream effectors 
through transducers. Ubiquitin and ubiquitin like pro-
teins mediated posttranslational modifications play an 
important role in cellular response to these stresses to 
maintain genomic integrity.

The response and repair of the DNA double‑strand 
breaks
Once DSB happens, the master kinase ATM is activated 
and initiates global signaling cascades and enriches the 
DNA damage signaling and repair factors at the DSB sites 
[1–6]. ATM kinase is recruited to DSB through interac-
tion with the C-terminus of NBS1, which is a subunit 
of the DSB sensor- the MRN complex, in response to 
DSB [7–9]. It has been reported that MRN complex can 
stimulate ATM kinase activity directly in  vitro [10, 11]. 
However, the exact mechanism by which MRN activates 

ATM is still not well understood. Activated ATM rapidly 
phosphorylates H2AX at serine 139, a variant of histone 
H2A, spreading in a bidirectional manner and spanning 
1–2 Mb in mammals in the DSBs [12]. MDC1, the major 
reader for γH2AX, contains tandem BRCT domains at 
its C-terminus that specifically bind γH2AX at DSB sites 
[13, 14]. Oligomerization of MDC1 is critical for recruit-
ment of MDC1 complex at DSBs [15–17]. Recruited 
MDC1 is phosphorylated by ATM and this phosphoryla-
tion is recognized by the FHA domain of the ubiquitin 
ligase RNF8 and recruits RNF8 to break sites [14, 18–21]. 
Meanwhile, MDC1 recruits more MRN complexes and 
ATM proteins, phosphorylating more H2AX at S139, 
spreading the assembly along chromatin and amplifying 
DDR signaling [14, 16, 17, 22–25]. RNF8, once recruited 
to the DSB, ubiquitinates the L3MBTL2 whose ubiquit-
ination recruits another ubiquitin ligase, RNF168 to the 
damage site. RNA168 then ubiquitinates H2A at lysine 
13/15 to promote engagement of 53BP1 and BRCA1 to 
DSBs [26–29]. DSBs are mainly repaired through two 
mutually exclusive pathways: homologous recombination 
(HR) and nonhomologous end joining (NHEJ) [23, 30]. 
Once a break is detected, 53BP1 and BRCA1 compete for 
directing the cell to commit to NHEJ or HR respectively 
[31]. CtIP, which is stimulated by BLM, MRN and RPA 
with enhanced endonuclease activity, cooperates with 
the nucleases EXO1 and BLM/DNA2 to resect the DNA 
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[32–36]. This process creates extensive single-stranded 
(ss) 3′ DNA overhangs. Replication protein A (RPA) 
wraps these ssDNAs, thereby protecting it from breakage 
[32, 37]. Subsequently, BRCA1-PALB2-BRCA2 complex 
with DSS1 promotes the replacement of RPA and the 
loading of the recombinase RAD51 onto ssDNA to form 
the pre-synaptic filament [38, 39]. RAD51 nucleoprotein 
filaments search for a homologous sequence to invade 
and displace one strand of the homologous template to 
form a displacement loop, facilitating sister chroma-
tid exchange [40–43]. To inhibit end resection induced 
homologous recombination, 53BP1 interacts with RIF1, 
the Shielding complex (REV7–SHLD1–SHLD2–SHLD3) 
and the CST/Pol α-Prim complex, and recruitment of 
these complexes shields DNA end from resection, and 
promote NHEJ [23, 44–48]. UHRF1, an E3 ligase, is also 
involved in this process. We discovered that UHRF1 
mediates K63-linked polyubiquitination of RIF1, and 
leads to its dissociation from 53BP1 and DSBs, thereby 
regulating DSB repair choice [49]. In this review, we have 
summarized the role of ubiquitin and ubiquitin like mod-
ifiers (Table 1) in response to DNA double strand breaks 
(DSBs) in mammalian cells.

Ubiquitin dependent signaling response to DSB
Ubiquitin (Ub) is a highly conserved small protein, com-
posed of 76 amino acids. Ubiquitination is the process 
of addition of ubiquitin protein to its substrate through 
a cascade of reactions. This process includes three steps 
reaction. First, E1 the Ub-activating enzyme activates 
Ub with adenosine triphosphate and transfers it to E2 
Ub-conjugating enzyme. Second, C-terminal carboxyl 
group of Ub forms a thioester bond with active cysteine 
in E2 protein. Third, the E3 Ub ligases (E3s) catalyze the 
C-terminal carboxyl group of Ub, forming of an iso-pep-
tide bond with the lysine ε-amino group of the substrate 
[50, 51]. More than 600 E3 ligases are predicted in human 
genome and these E3 ligase are categorized into two 

classes: the RING domain or U-box containing E3s (pro-
moting direct Ub transfer from an E2 to a substrate), and 
the HECT (homologous to the E6AP carboxyl terminus) 
containing E3s (directly catalyze the covalent attachment 
of ubiquitin to substrate proteins) [52]. The substrate 
can be modified with one ubiquitin or multi-ubiquitin 
formed polyubiquitin chain at one or several lysine resi-
dues in the substrate protein. In the ubiquitin polypep-
tide, there are seven lysines: K6, K11, K27, K29, K33, K48 
and K63. Ubiquitin moieties can be conjugated through 
one of the lysine residues or the N-terminal methionine 
residue to form specific polyubiquitin chain [52]. Differ-
ent ubiquitin linkage could induce different functional 
outcomes. Usually, the substrate modification  by Lys-
48- or Lys-11-linked polyubiquitin chain is powerful 
degradation signal, which is recognized by proteasome, 
thus leading to substrate degradation. Whereas, the Lys-
K63 or other different lysine linked polyubiquitin chain 
modification induces the change of the activity or cellular 
localization of its substrate [53]. In addition, single ubiq-
uitin modified substrates are also frequently reported.

Ubiquitination of histone proteins is an important step 
in DNA damage response. The nucleosomes are com-
posed of four core histones, H2A, H2B, H3 and H4, and 
linker histone H1. Following double strand break, H2A 
is ubiquitinated on K13 and K15 by RNF168. Both K127 
and K129 can be ubiquitinated by BRCA1/BARD1 [27, 
54, 55]. L3MBTL2 is tethered by MDC1 to the vicinity 
of the DNA lesion and K63-linked polyubiquitinated by 
RNF8. Ubiquitinated L3MBTL2 is subsequently recog-
nized by RNF168 and recruited to DSBs. RNF168 then 
ubiquitinates proteins such as histone H2A and H2AX to 
further amplify the damage response and recruit repair 
proteins such as BRCA1 and 53BP1 [29].  The E3 ligase 
RNF168 primes mono-ubiquitination of  H2A at lysine 
15, and RNF8 extends the monoubiquitination on this 
site to help RNF168-mediated K63-linked polyubiqui-
tination at lysine K15 subsequently once double strand 

Table 1 Summary of the ubiquitination and ubiquitination like systems

Modification Modifier 
encoding gene

Mature modifier 
protein

E1 E2 E3 Active protease

Ubiquitination UBB, UBC, UBA52 
and RPS27A

76 amino acids 2 (UBA1 and 
UBA6)

~ 40 Over 600 Dozens 
(USPs,UCHs,OTUs,MJD,JAMM)

Sumoylation SUMO1-4 varies from 
SUMO1-4

1 (SAE) 1 (UBC9) A dozen 6 (SENPs)

Neddylation NEDD8 76 amino acids 1 (NAE) 2 (UBC12 and 
UBE2F)

Over 600 3 (UCHL1, UCHL3 and USP21)

Ufmylation UFM1 83 amino acids 1 (UBA5) 1 (UFC1) 1 (UFL1) 1 (UFSP2)

Isgylation ISG15 163 amino acids 1 (UBE1L) 1 (UBCH8) 2 (HERC5 and 
TRIM25)

5 (USP18, USP2, USP5, USP13 
and USP14)

Fatylation FAT10 165 amino acids 1 (UBA6) 1 (USE1) Unknown Unknown
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breaks happen. RNF168 binds modified H2A by itself and 
elevates its concentration at the DSB and further ampli-
fies H2A monoubiquitination signal [27, 56, 57]. This 
monoubiquitination signal and dimethylation of H4K20 
is recognized by 53BP1 and recruitment of 53BP1 inhib-
its DNA end resection, thus suppressing HR and pro-
motes NHEJ [58–60].

Protein ubiquitination is reversible and dynamic and 
the level of protein ubiquitination is balanced by E3 
ligase and deubiquitinase. Deubiquitinase is responsible 
for removing ubiquitin from the substrate and regulat-
ing protein stability, activity or cellular localization. Till 
now, five DUB families have been discovered, including 
ubiquitin-specific proteases (USPs), ubiquitin C-terminal 
hydrolases (UCHs), ovarian tumor proteases (OTUs), 
Machado–Joseph disease (MJD) protein domain pro-
teases, and JAMM motif zinc metalloproteases [61].

The ubiquitination of H2A at lysine 13/15 is deubiq-
uitinated by USP51 and USP3 and loss of USP51 causes 
increased 53BP1 foci formation, and boosted sensitivity 
to IR [62, 63]. Other deubiquitinases are also suggested 
to remove ubiquitin at both sites, for example, USP44, 
and USP11 [64, 65]. JAMM deubiquitinase family mem-
ber BRCC36 complex with BRE or NBA1 opposes RNF8 
mediated ubiquitination of H2AX and enhances radio-
sensitivity [66–70]. The ubiquitination of H2A at lysine 
127/129 is performed by BRCA1/BARD1 E3 ligase 
complex and recruits SMARCAD1 for 53BP1 reposi-
tion, enhancing end resection and HR [55, 71]. PALB2 is 
also important for HR through interaction with BRCA1, 
forming complex with RAD51 and BRCA2 and facili-
tates RAD51 replacement of RPA [72–75]. The ubiqui-
tination of BRCA1 interacting partners PALB2, which 
is mediated by KEAP1 E3 ligase complex, decreases its 
interaction with BRCA1 and suppresses HR in G1 phase 
[76]. The deubiquitinase, USP11, counteracts this pro-
cess by removing polyubiquitin chain from PALB2 and 
sabotages the BRCA1-PALB2-BRCA2 complex assem-
bly [76]. RNF169 is recruited to DSBs through its ubiq-
uitin-binding MIU2 domain, competes with RNF168, 
removes 53BP1 and RAP80 bridging ubiquitin and his-
tone surfaces, and promotes HR [77–79]. Ubiquitination 
of RAD51 also impairs RAD51-BRCA2 interaction, and 
UCHL3 mediated deubiquitination of RAD51 strength-
ens RAD51-BRCA2 binding and facilitates RAD51 
recruitment to DSBs [80].

Another core histone H2B is globally monoubiquit-
inated at lysine 120 in response to DNA damage medi-
ated by RNF20-RNF40 E3 ubiquitin ligase complex. 
Monoubiquitinated H2B leads to chromatin relaxation, 
thereby increasing the accessibility of DNA repair fac-
tors following DNA damage [81]. Interestingly, acetyla-
tion of H2BK120 is found at 1  KB window of DSB and 

monoubiquitination of H2BK120 is beyond that win-
dow [82]. The function of H2B ubiquitination is still not 
clear. It might be important for DNA damage checkpoint 
response and HR [83, 84]. USP22 and the SAGA complex 
are reported to remove the ubiquitin from H2B and regu-
late early stage of DNA damage response.

The recruitment of both 53BP1 and BRCA1 to DSB 
sites is through RNF8/RNF168 mediated ubiquitina-
tion, despite of their different functions in DNA repair. 
53BP1 recognizes both H4K20me2 and H2A K15ub at 
DNA damage sites, whereas the recruitment of BRCA1 
is depending on RAP80 mediated by its ubiquitin-bind-
ing modules (UIMs) binding K63-linked ubiquitin chains 
on chromatin [18, 19, 85]. The ubiquitination of RAP80 
status affects its cellular localization in the cells. USP13, 
translocated to the DSBs after IR, deubiquitinates RAP80, 
enhances the recruitment of RPA80-BRCA1 complex 
to break sites [86]. BRCA1/BARD1 serves as an E3 for a 
range of substrates at DNA damage sites, including CtIP 
[87]. CtIP ubiquitination by BRCA1 does not mediate the 
degradation of CtIP protein. Actually, ubiquitinated CtIP 
facilitates its chromatin loading and plays an important 
role in regulating of G2/M checkpoint [87]. Recently, two 
groups reported that USP4 deubiquitinates CtIP, facili-
tates CtIP to the damage sites, and enhances HR [88, 89].
Further studies are needed to explore the complicated 
relationship between both two proteins as well as the 
determinants for DSB repair pathway choices.

Sumoylation dependent signaling response to DSB
Small ubiquitin-like modifiers (SUMOs) mediated modi-
fication is essential for eukaryotes [90]. Four SUMO 
genes are discovered in vertebrate genomes, including 
SUMO1-4 [91]. SUMO2 and SUMO3 polypeptides are 
very similar, and they share 97% sequence similarity in 
human. However, SUMO1 is quite different (47% simi-
larity shared by SUMO1 and SUMO2) [90]. Recently, 
SUMO4 is identified, sharing high similarity with 
SUMO2 and SUMO3. However, it contains a unique pro-
line residue located at position 90, preventing its matura-
tion by SUMO protease [92, 93]. With high similarity to 
ubiquitin, SUMO is also a small protein and can be con-
jugated to the target proteins through a serial enzymes, 
including E1 (SUMO-activating enzyme), E2 (SUMO-
conjugating enzyme), and E3 (SUMO ligase) [94]. How-
ever, the number of these enzymes is much less than 
ubiquitin system. Till now, only 1 E1 and 1 E2 and around 
a dozen of known E3s. Like ubiquitination, sumoylation 
can be reversed by sentrin-specific proteases (SENPs) 
including SENP1, SENP2, SENP3, SENP5, SENP6 and 
SENP7 [91].

SUMO plays important roles in the DNA damage 
response. Following DNA damage, numerous of DNA 
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repair factors are sumoylated. SUMO1-3 aggregate at 
DSBs in human cells and SUMO ligase PIAS1 and PIAS4 
are required for this accumulation of these SUMO pro-
teins, which are important for subsequent robust ubiqui-
tination of DSB-flanking chromatin mediated by RNF8, 
RNF168, and BRCA1 [95]. Later on, another study 
further found that sumoylation of HERC2 by PIAS4 
increases its interaction with RNF8 in a DNA damage 
dependent manner and stabilizes the RNF8-Ubc13 com-
plex [96]. These studies also suggest a more upstream role 
of SUMO in this response. RAP80 binding to SUMO at 
DNA damage sites via a SUMO-interacting motif (SIM) 
is also important for its recruitment to DSB sites [97, 98].

BRCA1 is also found to be sumoylated by PIAS SUMO 
E3 ligase in response to DSB, enhancing the ubiquitin 
ligase activity of BRCA1/BARD1complex and promot-
ing HR [99]. CBX4 sumoylates BMI at lysine 88 and 
facilities  the recruitment of BMI to the damage sites, 
mediating different DNA damage response pathways 
from PIAS1/PIAS4 [100]. Sumoylation is also critical 
for turning off DNA damage response after DNA repair 
is completed. Several labs independently reported that 
MDC1 is sumoylated at the damage site. Sumoylated 
MDC1 is recognized by the SUMO interacting motifs 
(SIM) of RNF4 and is further ubiquitinated by RNF4, 
inducing its degradation and removal of MDC1 and 
53BP1 from DSBs [101–103]. In addition, RNF4 also 
interacts with other SUMOylated protein through its 
SIMs and ubiquitinates polysumoylated proteins in order 
to facilitate their degradation [103].

SUMO and ubiquitin can form hybrid chains. The 
hybrid chains are recognized by proteins which contain 
tandem SUMO- and ubiquitin-interacting motifs (tSIM-
UIMs), such as RAP80. The tSIM-UIMs in RAP80 enable 
it to interact with greater affinity to hybrid SUMO-Ub 
chains compared with homotypic SUMO or ubiquitin 
chains. At damage sites, RNF4, a SUMO-targeted ubiq-
uitin E3 ligase, catalyzes SUMO-Ub hybrid chains. These 
hybrid chains are recognized by RAP80, thus promoting 
BRCA1 accumulation and enhancing HR [97, 98]. The 
protease for removing the hybrid chains is still not clear.

Neddylation dependent signaling response to DSB
Neural Precursor Cell Expressed Developmentally 
Down-Regulated Protein 8 (NEDD8) is another ubiq-
uitin like protein with 81 amino acids (NEDD8 precur-
sor). DEN1 processes NEDD8 to its mature form by 
removing the last 5 amino acids from its C-terminal tail 
[104]. One family of the E3 ligases- Cullin-RING ligases 
(CRLs) requires covalent modification of its core cul-
lin protein with NEDD8 to enhance their ligase activity 
[105]. NEDD8 is conjugated to its target proteins by an 
enzymatic neddylation cascade, including E1-activating 

enzyme (NAE) and E2-conjugating enzymes (UBC12, 
UBE2F) [106, 107]. NAE binds MgATP and NEDD8 
and forms acyl adenylated NEDD8. Acyl adenylated 
NEDD8 subsequently reacts with the active thiol site of 
the enzyme to form a NEDD8-NAE thioester, coupled 
with the release of AMP. Another reaction generates a 
second acyl adenylated NEDD8, forming a ternary com-
plex capable of transferring NEDD8 to E2. The last step 
is transferring NEDD8 from E2 to the respective cullins 
[108].

Neddylation functions critically in DNA damage 
response. CUL1 substrate receptor SKP2 modifies NBS1 
with lysine 63 polyubiquitin chain and enhances its inter-
action with ATM, thus promoting ATM activation upon 
DNA damage happens [109]. RNF111/UBE2M-mediated 
neddylation inhibits BRCA1 and CtIP-mediated DNA 
end resection, and regulates the choice between NHEJ 
and HR and also the balances between different recom-
bination sub-pathways [110]. Interestingly, RNF168 is 
reported to function as a NEDD8 E3 ligase after DNA 
damage [111]. It mediates both H2A ubiquitination and 
neddylation and the two modifications are against each 
other. RNF168 itself is also neddylated and this neddyla-
tion enhances its interaction with its E2 UBC13 [111]. 
CDC25A is a member of the CDC25 family of phos-
phatases and required for activation of cyclin-dependent 
kinases and cell cycle progression from G1 to the S phase. 
CDC25A is phosphorylated by CHEK2 following IR and 
ubiquitinated by CRL E3 ligase for degradation, leading 
to the cell cycle arrest, which leaves cells sufficient time 
to repair DNA damage [112]. Removal of NEDD8 from 
its substrate is also important. COP9 signalosome, a 
protein complex comprising 8 subunits, is in charge of 
deneddylation of CRLs [113]. NEDD8 is erased by the 
metalloprotease activity of a subunit COP9 signalosome-
COPS5, thereby suppressing the CRLs [114]. COPS5 is 
found to be important for Rad51 protein stability. Sup-
pression of COPS5 induces degradation of Rad51 pro-
tein and inhibition of HR due to enhanced CRL E3 ligase 
activity [115].

Ufmylation dependent signaling response to DSB
Ubiquitin fold modifier 1 (UFM1) is also a member of 
ubiquitin like proteins [116]. Similar to other modifiers, 
UFM1 protein needs further maturation by removing 
the last two amino acids in mammalian cells and expos-
ing glycine residue for subsequent conjugating reactions. 
Parallel to ubiquitination system, ufmylation system also 
includes E1, the UFM1-activating enzyme (ubiquitin-like 
modifier-activating enzyme 5; UBA5), E2, the UFM1-
conjugating enzyme 1 (UFC1); and E3, the UFM1-spe-
cific ligase 1 (UFL1). In contrast to numerous E3s for 
ubiquitination, only one E3 (UFL1) is identified so far. 
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UFM1 can be conjugated to its substrates via these three 
enzymes: UFM1 is activated by UBA5 in the presence of 
ATP and undergoes thioester reaction with the Cysteine 
250 of UBA5. Conjugated UBA5 interacts with UFC1 
and transfer UFM1 to UFC1, forming a similar thioester 
linkage with Cysteine 116 in UFC1. The E3 ligase UFL1 
transfers UFM1 from UFC1 to its target proteins [116]. 
The ufmylation is also a reversible process. UFM1 can be 
cut off from its substrate by the specific UFM1-specific 
proteases (UFSP). Again, in human, only one functional 
UFSP protein called UFSP2 has been identified so far 
[117]. Previous studies have suggested ufmylation system 
play important roles in hematopoiesis, reticulum home-
ostasis, liver development, mitosis, gene transcription, 
G-protein coupled receptor (GPCR) biogenesis, and fatty 
acid metabolism [118–124]. Genome-wide association 
studies also suggest UFM1 signaling is associated with a 
number of human diseases, including cancer, ischemic 
heart diseases, diabetes, atherosclerosis, hip dysplasia, 
and schizophrenia [125–128]. Recently, our group and 
others have discovered its new role in ATM activation 
following DNA damage [129, 130].

MRN complex serves as an initiator of DNA dam-
age response and DNA repair. It is responsible for ATM 
recruitment to DSBs. One study suggest that MRE11 is 
ufmylated, and this modification is important for the sta-
bility of MRN complex and ATM activation [130]. Our 
group also found that ufmylation signaling is important 
for ATM activation. We found that UFL1 aggregated 
at break sites quickly after double-strand breaks in an 
MRN complex dependent manner [129]. Recruited UFL1 
mono-ufmylates histone H4 at Lysine 31, which helps 
recruiting Suv39H1-KAP1-HP1 complex to the DSBs, 
resulting in H3K9 trimethylation and the activation of 
Tip60-ATM pathway [129]. Interestingly, activated ATM 
phosphorylates UFL1 at serine 462 and elevates UFL1 
activity, forming a positive feedback loop and amplify-
ing ATM activation signal. These studies suggest a tight 
interplay between the DDR and the UFM1 pathway [129].

Isgylation dependent signaling response to DSB
Interferon-stimulated gene 15 (ISG15) is a 17 kd protein 
and becomes mature until 8 amino acids are removed 
from its C terminus [131]. Type I interferon and virus 
infection stimulate its expression [132]. Like ubiquitina-
tion and other ubiquitin like modification, Isgylation also 
requires cascades of enzymes: an E1 (ubiquitin-activating 
enzyme E1-like protein, Ube1L; also named as UBA7), 
an E2 (ubiquitin-carrier protein H8, UbcH8), and an E3 
[HECT domain and RCC1-like domain-containing pro-
tein 5 (HERC5), and TRIM25 in humans] [133]. ISG15 is 
activated by E1 enzyme UBE1L, forming a high-energy 
thioester intermediate. Then it is transferred to the 

active-site cysteine of E2 UbcH8. E3 ligases HERC5 sub-
sequently transfers the activated ISG15 to the substrates 
[134, 135]. USP18, USP2, USP5, USP13 and USP14 are 
the ISG15-specific proteases and unconjugate ISG15 
from its substrates [136–139]. DNA damage inducers 
induce Isgylation of p53 at K291  and K292 by the E3 
ligase EFP and greatly enhances p53 transcriptional activ-
ity; hence the transcription of p53 target genes (CDKN1, 
BAX, MDM2 and ISG15) and Isgylation factors are ele-
vated. Isgylated p53 also facilitates its phosphorylation 
and acetylation, thus suppression of cell growth and tum-
origenesis [140]. Another DNA damage response protein, 
PCNA also can be modified by ISG15 [141].

Fatylation dependent signaling response to DSB
Ubiquitin like protein HLA-F adjacent transcript 10 
(FAT10) is encoded in the major histocompatibility com-
plex class I locus and is synergistically inducible with 
interferon-γ and tumor necrosis factor α. FAT10 is differ-
ent from other members. Its protein contains two ubiq-
uitin like domain [142] and a free GG motif located at 
its C terminal tail [143]. Due to its unique structure, it is 
immediately available for activation and conjugation. In 
FAT10 conjugation cascade, FAT10 binds to its E1 UBA6 
and forms UBA6-FAT10 thioester. E2 protein USE1, also 
named UBE2Z, transfers the thioestered FAT10 to its 
lysine to form a stable isopeptide linkage [144]. The E3 
ligase for FAT10 and the deconjugating enzymes have not 
been discovered yet.

The function of FAT10 has previously been sug-
gested. Depletion of FAT10 in mice prolongs lifespan 
and reduces adiposity, thus suggesting that FAT10 has 
a role in aging [145]. Its aberrant expression have been 
investigated in various cancer types, such as gastrointes-
tinal cancer, hepatocellular carcinoma (HCC), pancreatic 
ductal adenocarcinoma, human glioma and cervical can-
cer [146]. The role of FAT10 in DNA damage response 
is not very clear. Only limited studies have been per-
formed. Proteomic analyses of Fatylation have identified 
many DNA damage response proteins as FAT10 sub-
strates, including Ku70, RECQ1, FUS, RAD51C, PCNA, 
DNAJA1, H2AX,  KAP-1 [147, 148]. Recently, it is con-
firmed that IR induces the  increase of Fatylated PCNA 
and leads to degradation of PCNA [149]. More studies 
are required to better understand the role of FAT10 in 
DNA damage response.

Conclusions
Impressive studies of the principle and mechanism 
of ubiquitination, and ubiquitination- like modifica-
tions in DSB induced DNA damage response and DNA 
repair have been published. Here we listed the targets 
of ubiquitination, sumoylation, neddylation, Isgylation, 
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and ufmylation, which are involved in the DSB signal-
ing. We expect that the list of the substrates of those 
modifications will keep growing. Many challenges are 
still present. Even though ubiquitination and sumoyla-
tion are extensively studied, new question is emerging. 
For example, what is the function of branched Ub chain 
and Ub chain with hybrid linkage? Recent studies also 
suggest that Ub itself can be modified by PTMs, such 
as phosphorylation, and how these PTMs affecting Ub 
reaction and substrate function is not entirely clear. 
In addition, the exact function of ISG15 and FAT10 is 
still not clear. For some other Ub like molecules, such 
as ubiquitin-related modifier-1 (URM1), fan ubiqui-
tin-like protein 1 (FUB1) and histone mono-ubiqui-
tination 1 (HUB1), their functions in DNA damage 
have not yet  been explored. Further studies are there-
fore needed  to explore new principles and mechanism 
of these new ubiquitin like proteins in maintenance 
of genome stability. Further efforts are also likely to 
study the crosstalk among these modifiers and their 
contribution to DSB induced DNA damage response. 
A deep understanding of the principle and mecha-
nism of these posttranslational modifications can 
also potentially  provide new therapeutics for the can-
cer patients. The inhibitor of Neddylation E1 enzyme 
NAE—MLN4924 has been developed and displays 
dramatic inhibition of hematological malignancies and 
solid tumors [150–161]. Multiple Phase I clinical study 
of MLN4924 are undergoing [162–166]. Better under-
standing of the complexity of these signaling will help 
develop more small molecular inhibitors to target the 
factors in uibiquitination and ubiquitination like modi-
fication pathways for treating cancer or other diseases.
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