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Autophagy and its role in regeneration 
and remodeling within invertebrate
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Abstract 

Background: Acting as a cellular cleaner by packaging and transporting defective proteins and organelles to lys-
osomes for breakdown, autophagic process is involved in the regulation of cell remodeling after cell damage or cell 
death in both vertebrate and invertebrate. In human, limitations on the regenerative capacity of specific tissues and 
organs make it difficult to recover from diseases. Comprehensive understanding on its mechanism within invertebrate 
have strong potential provide helpful information for challenging these diseases.

Method: In this study, recent findings on the autophagy function in three invertebrates including planarian, hydra 
and leech with remarkable regenerative ability were summarized. Furthermore, molecular phylogenetic analyses of 
DjATGs and HvATGs were performed on these three invertebrates compared to that of Saccharomyces cerevisiae, Cae-
norhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens.

Results: In comparison with Scerevisiae, C elegans, D melanogaster, M musculus and human, our analysis exhibits the 
following characteristics of autophagy and its function in regeneration within invertebrate. Phylogenetical analysis 
of ATGs revealed that most autophagy-related genes (ATGs) were highly similar to their homologs in other species, 
which indicates that autophagy is a highly conservative biological function in both vertebrate and invertebrate. 
Structurally, almost all the core amino acids necessary for the function of ATG8 in mammal were observed in inverte-
brate HvATG8s and DjATG8s. For instance, ubiquitin-like domain as a signature structure in each ATG8, was observed 
in all ATG8s in three invertebrates. Basically, autophagy plays a key role in the regulation of regeneration in planarian. 
DjATG8-2 and DjATG8-3 associated with mTOR signaling pathway are sophisticated in the invertebrate tissue/organ 
regeneration. Furthermore, autophagy is involved in the pathway of neutralization of toxic molecules input from 
blood digestion in the leech.

Conclusions: The recent investigations on autophagy in invertebrate including planarian, hydra and leech suggest 
that autophagy is evolutionally conserved from yeast to mammals. The fundamental role of its biological function in 
the invertebrate contributing to the regeneration and maintenance of cellular homeostasis in these three organisms 
could make tremendous information to confront life threatening diseases in human including cancers and cardiac 
disorders.

Keywords: Autophagy and regeneration, Autophagy-related genes (ATGs), mTOR, Hydra vulgaris, Dugesia japonica, 
Leech, Hirudo medicinalis
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Background
Autophagy is an evolutionarily conserved process, which 
plays a crucial role in maintaining cellular homeostasis 
by removing defective proteins, organelles and invad-
ing pathogens [1, 2]. Based on different mechanisms by 
which intracellular cargos are delivered to lysosomes, 
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three forms of autophagy have been identified—chaper-
one-mediated autophagy (CMA), microautophagy and 
macroautophagy (the usual autophagy) [3, 4]. Multiple 
lines of evidence suggest that autophagic degradation is 
triggered by various stress responses, such as hypoxia 
[5], inflammation [6], and nutrient deficiency [7]. Due to 
its crucial role in maintaining cellular homeostasis, dys-
function of autophagyis thought to be associated with 
numerous diseases, including cancer, age-related disor-
ders, infection, regeneration, et al. For example, in cancer, 
autophagy plays a dual role in different environments and 
tumor stages [8, 9]. In the early stage of tumorigenesis, 
autophagy acts as aninhibitor through its cellular quality-
control function, while in the late stage of tumorigenesis, 
autophagy provides a protective mechanism for main-
taining cancer cell survival and homeostasis. According 
to Nilsson, deficient autophagy can disrupt the secretion 
of Aβ peptides, while the accumulated intracellular Aβ 
peptides can lead to Alzheimer’s disease (AD)-related 
pathology [10]. Moreover, autophagy-related genes 
(ATGs),such as ATG7, CDK5 and Beclin 1, may medi-
ate the cross-talk between molecular mechanisms of 
autophagy and AD [11].

Regeneration is needed in maintaining homeostasis 
and adapting to the external environment due to apop-
tosis. Growing evidence has demonstrated that in mam-
mals, autophagy is responsible for the repair of damaged 
tissues and the replacement of impaired organs or body 
parts after injury. For example, in muscle regeneration, 
autophagy may regulate proteostasis and survival mecha-
nisms in regenerating fiber. Dysfunction of autophagy 
will lead to a decline in the function and number of 
muscle satellite cells, while restoration of autophagy can 
effectively prevent senescence and restore regenerative 
functions of geriatric satellite cells [12]. Additionally, 
autophagy plays a vital role in maintaining quiescence 
and stemness of cells by clearing active and healthy mito-
chondria in hematopoietic stem cells (HSCs) [13].

Regenerative ability may vary from species, organs, tis-
sues, and even development stages [14]. In human, limi-
tations on the regenerative capacity of specific tissues 
and organs make it difficult to recover from diseases. 
Compared with mammals, most invertebrates, such as 
planarian, hydra and leech, have remarkable abilities to 
regenerate any missing part after amputation [15–17]. 
A large population of adult stem cells may explain the 
astonishing regenerative abilities of planarians and 
hydras, while leeches, which have only a few stem cells, 
achieve their regeneration by dedifferentiation of tissue 
cells and migration and proliferation of stem cells [17]. 
Consistent with observations in vertebrates, autophagy 
appears to be a response to starvation as well as to injury 
in planarians and hydras [18, 19]. In starving animals, 

dramatic increase in the number of autophagic vacuoles 
was detected. An appropriate regulation of autophagy 
guarantees regeneration efficient in these invertebrates 
[19, 20]. In regenerating hydra, excessive autophagy 
induced by Kazal1 silencing leads to death [21]. Treat-
ment with rapamycin, a depressor of autophagy, delays 
the early phases of head regeneration in both fed and 
starved hydra. Besides, the autophagy inhibitors Wort-
mannin and Bafilomycin can also slightly delay head 
regeneration [19]. Gtdap-1, the planarian ortholog of 
human death-associated protein-1 (DAP-1), is involved 
in remodeling by a process of autophagy during planarian 
regeneration and starvation [18].

Investigating the cellular function of autophagy in 
regeneration process will allow us to know more about 
the situation in proliferation-related diseases and will 
contribute to the development of therapeutic strate-
gies for human disorders. In comparison with verte-
brates, invertebrates including planarian, hydra and 
leech present special characteristics that make them 
be valuable models to study the relationship between 
autophagy and regeneration: (1) in contrast to mam-
mals where autophagy only occurs at specific times or 
in very specific organs, they offer unique models where 
autophagy occurs continuously due to their un-paralleled 
regenerative capability and continual process of change. 
(2) using them to study autophagy means addressing 
roles of autophagy in regeneration at a whole-organism 
level, but not at an organ level or asystem level [19, 22, 
23]. Therefore, to further assess the role of autophagy in 
regeneration, ATGs and functional roles of autophagy in 
planarian, hydra and leech are mainly described in this 
article.

ATG family and mTORC1‑related remodeling 
within invertebrates
ATG proteins involved in autophagy in general
Autophagy-related genes (ATGs) are essential for the 
formation of autophagosomes. Since the discovery of 
autophagy-related (ATG) genes initially in yeast, identi-
fication of ATG genes was undertaken in higher eukary-
otes [24, 25]. Mammals contain almost all of them as well 
as a series of factors specific to higher eukaryotes.

Among these ATGs, one subset which is referred to 
as the “core” molecular machinery, plays a crucial role 
at different stages of autophagic process, i.e. initiation, 
elongation, maturation and fusion with lysosomes [3]. 
In mammals, these core ATG genes can be divided into 
several functional groups: (1) ULK1-ATG13-FIP200-
ATG101 complex, (2) class III phosphatidylinositol 
3-kinase (PtdIns3K) complex I, (3) two ubiquitin-like 
conjugation systems (ATG8/LC3 conjugation system and 
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ATG12 conjugation system) and (4) ATG9 and its cycling 
system (ATG2, ATG9, ATG18) [26].

In mammals, initiation of autophagy occurs through 
ULK complex consisting of ULK1/2, ATG13, FIP200 and 
ATG101. ULK1/2, a homolog of yeast ATG1, contains an 
N-terminal kinase domain, a LIR motif and two C-termi-
nal MIT domains [27]. Autophosphorylation of ULK1at 
Thr180 is crucial for activation [28]. MIT domain of 
ULK1 binds to MIM domain of ATG13, and ATG13 
recruits ULK1 to FIP200 (a focal adhesion kinase family-
interacting protein of 200  kDa). FIP200, a hybrid mole-
cule of ATG17 and ATG11 [27], contains an N-terminal 
ATG17-like domain, a LIR motif, a coiled-coil region and 
a C-terminal Claw domain. Both ATG13 and FIP200 can 
stabilizeULK1/2 and increase its kinase activity [29, 30]. 
Besides MIM domain, ATG13 in mammals also con-
tains an N-terminal HORMA and a LIR motif. The LIR 
domains of ULK1 and ATG13 in humans can mediate 
their interaction with ATG8s [31]. The ATG13 contain-
ing HORMA domain forms a heterodimer with ATG101 
containing HORMA domain [32]. Therefore, the asso-
ciation of ATG101 with ATG13 is the key to autophagy 
induction [33]. Notably, ATG101 is an entirely novel 
ATG protein in mammals [34], contributing to main-
taining the stability and basal phosphorylation of ATG13 
and ULK1 [35, 36]. The WF-finger motif of ATG101 can 
recruit downstream proteins to the autophagosome for-
mation site in mammals [37], and the C-terminal region 
is responsible for the binding of phosphatidylinositol 
3-kinase (PtdIns3K) complex [32].

Class III PtdIns3K complex I, consisting of VPS34, 
VPS15, Beclin1 and ATG14(L)/Barkor, is a functional 
effector of ULK complex and contributes to promot-
ing autophagy elongation [29]. VPS34, composed of an 
N-terminal lipid-binding C2 domain, a helical domain 
and a C-terminal kinase domain, is responsible for phos-
phorylating phosphatidylinositol and thus producing 
P13P [38]. VPS15 contains an N-terminal kinase domain, 
a HEAT domain and a C-terminal WD40 repeat domain. 
Beclin-1, a homology of ATG6, contains a coiled-coil 
domain and a BABA domain [39]. ATG14L is composed 
of a coil-coil domain and a BATs domain [27]. When 
ULK1 phosphorylates BECN1 on Ser14, the ATG14L-
containing VPS34 complex is then activated. The 
cysteine-rich domain near the N-terminal of ATG14L 
plays a vital role in its starvation-induced translocation 
to the phagophore initiation sites [40]. BATs domain is 
required for ER localization of PI3KC3-C1, whereas the 
C-terminal region of VPS34 determines the orientation 
on the membrane [41].

In mammals, ATG8 protein is comprised of seven 
homologs: LC3A, LC3B, LC3C, LC3B2, GABARAP, 
GABARAP‐L1 and GABARAP‐L2/GATE‐16 [42]. All 

ATG8/LC3 proteins contain conserved C-terminal 
ubiquitin-like structures despite the lack of similarity in 
amino acid sequence [43]. The ubiquitin-like structure, 
comprising four β-strands and two α-helices, is respon-
sible for the protein–protein interaction (PPI) [44]. The 
two amino-terminal α helices, which differ among ATG8 
proteins, have their specific roles during autophagy. 
Emerging evidence suggests that LC3 mediates the elon-
gation step, while GABARAP and GABARAPL2 are 
involved in the sealing and fusion of autophagosome [45]. 
Among four homologs (ATG4A, B, C, D) of the protease 
ATG4 in mammals, ATG4B, which is composed of a 
conserved papain-like domain and a unique short-finger 
domain according to the structural studies [27], plays a 
crucial role in processing all ATG8 family proteins [46]. 
In the process of autophagy, ATG8 is cleaved by ATG4at 
C-terminus to generate the cytosolic ATG8-1 with a gly-
cine residue. Then, the glycine residue is covalently con-
jugated in a reaction catalyzed by ATG7/ATG3.

ATG7 is an E1-like enzyme that includes two domains, 
the N-terminal domain (ATG7-NTD) which can spe-
cifically recruit two distinct autophagic E2-like proteins, 
ATG3 and ATG10 [47], and the C-terminal domain 
(ATG7-CTD)which is involved in binding and activating 
ATG8 and ATG12 [27]. The ATG12 can be conjugated to 
ATG5 in a reaction catalyzed by ATG7 and ATG10. The 
ATG12-ATG5 conjugate can be directly recruited to pha-
gophore by ATG16L in the interaction between nonco-
valently and ATG5 via a coiled-coiled domain [48]. The 
ATG12-ATG5-ATG16L complex can interact with ATG3 
and facilitate the transfer of ATG8-like proteins from 
ATG3 to phosphatidyl ethanolamine (PE).

ATG9 is a six-transmembrane protein, the only known 
transmembrane protein in ATG core proteins, with 
both the N and C terminal in the cytosol. The function 
of ATG9 remains a mystery. In mammalian cells, ATG9 
(called mATG9) resides in a unique endosomal-like 
compartment and on endosomes [49]. The mATG9 is 
required for the formation of phagophores and its traf-
ficking to phagophore is regulated by TBC1D14 and 
TRAPPIII independent of early autophagy proteins, such 
as ULK1 [50]. And the fusion of ATG9 vesicles may pro-
vide the membrane structures for the growing phago-
phore [51].

ATG family within invertebrates
Attention has been shifted from higher eukaryotes (e.g. 
yeast) to invertebrates in identifying the cellular basis 
of autophagy and the homologs of ATGs [52–54]. Dur-
ing evolution, ATGs have been duplicated and lost, thus 
resulting in the extinction and expansion of some sub-
families of autophagy-related genes. For instance, multi-
ple ATG8 genes can be found in mammals, whereas there 
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is only a single ATG8 gene in fungal species (e.g. yeast) 
[42]. Increasing number of yeast ATG orthologs were 
identified in Hydra vulgaris (H. vulgaris) and Dugesia 
japonica (D. japonica).

DjATGs include thirteen single genes and three ATG8 
family-encoding genes (DjATG8-1, DjATG8-2, and 
DjATG8-3). Analysis of detailed biochemical index 
of these DjATG proteins showed their lengths ranged 
from 106 (DjATG12) to 1790 amino acids (DjATG2). 
The predicted molecular weights ranged from 11.9  kDa 
(DjATG12) to 205.9 kDa (DjATG2), pI ranged from 4.75 
(DjATG3) to 9.16 (DjATG8-2), and gravity ranged from 
−0.644 (DjATG8-1) to 0.044 (DjATG9), suggesting that 
there were significant variations and potential functional 
differentiation. Based on sequence alignment, DjATGs 
could be divided into two groups: group with high 
identity and group with low identity. The former group 
includes DjATG3, DjATG4, DjATG5, DjATG7, DjATG8 
and DjATG12 (> 35%), while the rest falls into the latter 
group (Table 1).

ATG protein sequences ofHomo sapiens (H. sapiens), 
Mus musculus (M. musculus), Drosophila melanogaster 
(D. melanogaster), Caenorhabditis elegans (C. elegans) 
and Saccharomyces cerevisiae (S. cerevisiae) were col-
lected and aligned with those of D. japonica. Phyloge-
netically, some gene families were highly similar to their 
homologs in other species (Fig.  1). For instance, ATG5, 
ATG8 and ATG12 of six species were clustered together, 
suggesting that they were evolutionally conserved and 
might have originated from a common ancestor. How-
ever, the separation of ATG1, ATG2, ATG9, ATG10 and 
ATG13 by other ATGs indicated a relatively high varia-
tion in protein sequences.

Compared to the single ATG8 gene present in yeast, 
there are three ATG8 orthologues present in D. japonica. 
Sequence alignment of ATG8s displayed 20 amino acids 
with conserved sequences in all proteins (black), indi-
cating a highly conserved primary amino acid sequence 
(Fig.  2). ATG8-interacting motif (AIM) interacts with 
two adjacent hydrophobic pockets (HP1 and HP2) of 
ATG8, with HP1 composed of  Glu17,  Ile21,  Pro30,  Ile32, 
 Lys48 and  Leu50, and HP2 composed of  Tyr49,  Val51,  Pro52, 
 Leu55,  Phe60 and  Val63 [79]. Under the interaction of 
ATG8 and ATG3,  Val31,  Lys46,  Lys48,  Tyr49,  Leu50,  Val51, 
 Val63 and  Ile64 play crucial roles. Besides, new evidence 
has indicated that  Arg65,  Phe104 and  Tyr106 in yeast ATG8 
contribute to the conjugation of ATG8 to PE and the 
C-terminal glycine [120]. Results suggested that almost 
all the core amino acids, except  Ile32,  Tyr49,  Leu55,  Phe60 
and  Val63, are necessary for the function of ATG8 were 
observed in all proteins. Notably, in D. japonica, a mutant 
of  Val31 was observed. Besides, the 6th and 22nd amino 
acids in DjATG8-2 in D. japonica are glutamine and 

lysine respectively; but in other proteins, they are lysine 
and arginine.

Genomic DNA of Hydra Vulgaris encodes six ATGs 
from HvATG4 and HvATG8 gene families, and oth-
ers encoded by a single gene. HvATGs were composed 
of 118 (HvGABARAP and HvGABARAPL2) to 1296 
amino acids (HvATG2), with corresponding molecular 
weights from 13.7  kDa (HvGABARAPL2) to 145.5  kDa 
(HvATG2), pI from 4.79 (HvATG3) to 9.45 (HvLC3C), 
and gravity from -0.672 (HvBCEN1) to -0.082 (HvATG9). 
Based on sequence alignment, most HvATGs, includ-
ing HvATG4, HvATG5, HvBECN1, HvATG9, HvATG10, 
HvATG12 and HvATG ATG 16L1, were highly similar to 
those of mammals, while HvATG3, HvATG7, HvATG8s 
and HvATG101 share high identity with other species 
(> 35%) (Table 1).

Molecular phylogenetic analysis of ATG proteins 
revealed that most HvATGs, except HvATG13 and 
HvATG14, were highly similar to their homologs in other 
species, indicating that ATGs in H. vulgaris, H. sapiens, 
M. musculus, D. melanogaster, C. elegans and S. cerevisiae 
had a common ancestor (Fig. 3). The sequence alignment 
of HvATG8s with other species indicated that HvATG8s 
had highly conserved primary amino acid sequences. 
Sequence alignment of ATG8s displayed 19 amino acids 
with conserved sequences in all proteins (black), includ-
ing the core amino acids described above. Interestingly, 
the 40th amino acid in HvATG8is valine, while in other 
ATG8s, it is iso-leucine. The ubiquitin-like domain, a sig-
nature structure in each ATG8, was composed of 103–
115 amino acids, as shown in Table 2 (Fig. 4).

DjATG8 family contributes to tissue remodeling 
after amputation
A number of evidences have suggested the impact of 
autophagy during regeneration. For instance, induced 
autophagy in mice can increase microtubule stability 
through the degradation of SCG10, an MT-destabili-
zation protein, thus promoting axon regeneration after 
injury [121]. A recent study showed that in a hypomor-
phic ATG16L1 mouse with autophagy attenuated but still 
present, the recovery of skeletal muscle following cardio-
toxin mediated damage was slower [122]. Autophagy also 
plays an important role in maintaining the proliferation 
of intestinal stem cells of fruit fly during aging and regen-
eration [123].

Using Planarians as an in vivo autophagy model, many 
studies carry on their experiments on the animal for 
remarkable plasticity and regenerating process. A study 
on D. japonica showed that DjATG8-2 (a homolog of 
Schistosoma haematobium GABARAPL2) and DjATG8-3 
(a homolog of yeast ATG8) are involved in the tissue 
remodeling of planarians during regeneration [20]. Both 
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DjATG8 proteins contain conserved ATG8 domains and 
three conserved amino acid residues (Arg65, Phe104 and 
Tyr106), which are essential for the conjugation of ATG8 
to PE and C-terminal glycine; DjATG8-3 has similar 
structures in yeast ATG8 protein, with AIM peptide sites 
buried in two distinct pockets (W and L). The formation 
of autophagosomes is inhibited when expression levels of 
DjATG8-2and DjATG8-3 are down-regulated by RNAi. 
Then, both DjATG8-2and DjATG8-3 are expressed in 
blastema by WISH. During regeneration, up-regula-
tion of expression levels of DjATG8-2 and DjATG8-3 is 
observed. However, the regeneration will be slowed down 

due to RNA interference of DjATG8-2 or DjATG8-3,and 
the loss of DjATG8-3will induce death after amputation 
and karyolysis in nucleus of planarian. In conclusion, 
the study of Kang et  al. indicated that DjATG8-2 and 
DjATG8-3 play an essential role in the tissue remodeling 
of planarians during regeneration.

mTOR signaling pathway associated autophagy 
in remodeling and regeneration
Mechanistic target-of-rapamycin (mTOR), a serine/
threonine kinase, involves two functional complexes: 
mTORC1 and mTORC2. mTORC1, as a central regulator 

Fig. 1 Molecular phylogenetic analysis of ATGs by Maximum Likelihood. The evolutionary tree is presented to compare each subgroup with family 
members present in other species. Bootstrap analysis was performed with 1000 replicates. Evolutionary analyses were conducted in MEGA-X. The 
proteins were analyzed as intact sequences. The analysis involved genes from D. japonica (Dj), S. cerevisiae (Sc), C. elegans (Ce), D. melanogaster (Dm), 
M. musculus (Mm), and H. sapiens (Hs). The names in red color are the D. japonica ATGs



Page 8 of 16Song et al. Cell Biosci          (2020) 10:111 

in cell metabolism and proliferation, is composed of 
mTOR catalytic subunit, Raptor, mLST8 and two inhibi-
tory subunits (PRAS40 and DEPTOR) [27]. FKBP12-
rapamycin complex binds to FKBP12-rapamycin-binding 
(FRB) domain, inhibiting the kinase activity of mTOR 
[124]. Tuberous sclerosis (TSC) tumor suppressor com-
plex (TSC1/TSC2) indirectly inhibits mTORC1 activ-
ity by negatively regulating the activity of Rheb via the 
GTPase-activating protein (GAP) activity of TSC2 [125]. 
Activation of growth factor/PI3K/AKT signaling path-
way, ERK1/2, and p90 ribosomal S6 kinase (RSK1) can 
inactivate TSC1/TSC2 complex, leading to the activation 

of mTOR [126–128]. In contrast, AMPK phosphorylates 
TSC2, resulting in the inhibition of mTORC1 activity 
[129].

In growing cells, autophagy is negatively regulated 
by high mTORC1 activity rather thanmTORC2. For 
instance, mTORC1 inhibits autophagy through direct 
phosphorylation ULK1 at the Ser758 site to prevent the 
interaction between ULK1 and AMPK, which is crucial 
for ULK1 activation [130]. mTORC1 can also prevent 
the formation of autophagosome through phosphoryla-
tion of ATG14L in VPS34 complex [131]. The preven-
tion of nuclear translocation of transcription factor E3 

Fig. 2 Multi-alignment analysis of ATG8 family proteins. Black shading indicates position with fully conserved redsidues. D. japonica (Dj), S. cerevisiae 
(Sc), C. elegans (Ce), D. melanogaster (Dm), M. musculus (Mm), and H. sapiens (Hs)
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Fig. 3 Phylogenetic analysis of ATG family proteins by Maximum Likelihood. The evolutionary tree is presented to compare each subgroup 
with family members present in other species. Bootstrap analysis was performed with 1000 replicates. Evolutionary analyses were conducted in 
MEGA-X. The proteins were analyzed as intact sequences. Phylogenetic relationships of ATGs from H. vulgaris (Hv), S. cerevisiae (Sc), C. elegans (Ce), D. 
melanogaster (Dm), M. musculus (Mm), and H. sapiens (Hs). The names in red color are the H. vulgaris ATGs

Table 2 ATG8 family members in Dugesia japonica and Hydra vulgaris 

Gene Name NCBI Ubiquitin-like domain 
(AA)

Region (AA) Transcripts (bp) CDS (bp)

DjATG8-1 APU52177.1 107 5–111 1014 354

DjATG8-2 APU52176.1 112 5–116 607 360

DjATG8-3 APU52178.1 103 11–113 1169 357

HvGABARAP CDG71662.1 115 2–116 667 357

HvGABARAPL2 CDG70632.1 112 5–116 663 357

HvLC3A XP_012555909.1 105 19–123 643 390

HvLC3C CDG67574.1 113 11–123 934 378
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(TFE3) and microphthalmia-associated transcription 
factor (MITF) by mTOR1 can provide an autophagy inhi-
bition mechanism at the transcriptional level [132, 133]. 
Besides, accumulating evidence suggests that autophagy 
can also be regulated by acetylation. Wan et  al. found 
that the phosphorylation of histone acetyl-transferase 
(HAT) p300 by mTOR leads to suppression of starvation-
induced autophagy [134].

More studies have shown that mTOR is one of the criti-
cal regulatory signaling pathways of tissue regeneration 

in vertebrates and invertebrates. In mammalian cells, 
mTOR plays a different or even opposing role in diverse 
neuronal injury models. It’s reported that the mTOR sign-
aling pathway differently regulates central and peripheral 
axon regeneration in mice [135]. Inhibition of mTOR by 
rapamycin dramatically can diminish the axon regen-
eration from embryonic cortical neurons. In contrast, 
mTOR is not required for adult DRG axonal regenerative 
ability. However, injury-induced neuronal mTOR activ-
ity boosts Stat3 signaling in PNS neurons, contributing 

Fig. 4 Multi-alignment analysis of ATG8 family proteins. Black shading indicates conserved amino acids. H. vulgaris (Hv), S. cerevisiae (Sc), C. elegans 
(Ce), D. melanogaster (Dm), M. musculus (Mm), and H. sapiens (Hs)
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to axon regeneration [136]. Moreover, the treatment of 
injured sciatic nerve of a rat with rapamycin, in which 
autophagy is induced by inhibiting the activation of 
mTOR, promotes the nerve regeneration and rebuilds the 
motor function [137]. Additionally, the overexpression 
of mutant  HDAC5AA in rats can result in an increase in 
HDAC5 cytoplasmic localization and activate the mTOR 
pathway, thus enhancing the regeneration ability of RGCs 
after optic nerve injury [138]. mTOR is also an important 
regulator for muscle regeneration. Peroxisome prolifera-
tor activated receptors γ (PPARγ) can be stimulated with 
nutmeg, which may be involved in myogenesis process of 
cardiac muscle. In aging rats, treatment with nutmeg may 
induce AKT-mTOR-autophagy pathway, thus increasing 
the muscle mass [139].

In D. melanogaster, TOR is required for the prolifera-
tion, growth and survival of germline stem cells (GSCs). 
When exposed to ionizing radiation, foxo paused the 
cell cycle of the damaged stem cells. TOR was able to 
overcome the action of foxo, and the stem cells resumed 
dividing and regenerating the damaged tissue [140]. 
What’s more, TOR activation in D. melanogaster intesti-
nal stem cells (ISCs) is required for the rapid activation of 
ISC proliferation in response to a challenge [141].

Rapamycin that acts as a negative regulator of mTOR, 
efficiently induces autophagy in both intact and regener-
ating hydra. The transiently excessive autophagy might 
delay the early phase of head regeneration. During head 
regeneration, mTOR expression remains constant in the 
early phase of regeneration, progressively decreases in 
the early-late phase of regeneration and is finally dramat-
ically up-regulated in the late phase of regeneration. It 
suggests that autophagy might participate in head regen-
eration at the early and early-late stages when mTOR is 
low, but inhibited at the late stage of regeneration [19]. A 
special hydra species named H. oligactis (Ho) undergoes 
aging when the temperature drops to 10  °C. Induction 
of an efficient autophagy is able to rescue epithelial cell 
cycling. However, in aging animals, rapamycin treatment 
restores epithelial proliferation but does not rescue the 
autophagy flux, suggesting that the positive effects are 
regulated by a distinct mechanism [142].

The role of mTOR signaling pathway in regenera-
tion has also been identified in planarians. In Schmidtea 
mediterranea (S. mediterranea), inhibition of mTOR with 
RNA interference disrupts the behavior of neoblasts at 
the systemic level and severely restricts cell proliferation 
[143]. Emerging evidence has shown that mTOR signal-
ing acts antagonistically with Smed-smg-1 (a homolog 
of PIKK). Smed-smg-1 (RNAi) results in a hyper-respon-
siveness to injury. Regenerative blastemas remain undif-
ferentiated leading to lethal ectopic outgrowth. Loss 
of mTORC1 (Smed-tor RNAi or Smed-raptor RNAi) is 

capable of reversing the effects of Smed-smg-1 (RNAi) 
by decreasing proliferation [144]. Rapamycin treatment 
can also prevent the tissue homeostasis and regenera-
tion defects observed in Smed-PTENRNAi worms [145]. 
Besides, mTOR down-regulation leads to elongation of 
telomeres in planarian stem cells [146].

mTOR is reported to be involved in the regulation of 
regeneration in D. japonica, which is consistent with its 
role in S. mediterranea [147]. During regeneration, the 
expression level of DjTOR in posterior blastemas (PBs) 
surrounding the wound is up-regulated. Notably, the 
inhibition of DjTORwill lead to asymmetric blastemas 
and remarkable reduction growth, while rapamycin can 
successfully inhibit DjTORand induce autophagyin D. 
japonica. Therefore, worms treated with rapamycin dis-
played asymmetric blastemas and neuronal defects. In 
conclusion, DjTOR is involved in the regulation of regen-
eration in D. japonica.

Bloodstream infection and autophagy via leech
Leeches are well-known for their blood-feeding habits 
and their extensive use in many human diseases. In relief 
of venous congestion and plastic and reconstructive sur-
gery [148, 149], the efficient lysis and catabolism of blood 
can provide an abundance of nutrients for leeches. How-
ever, the degradation of hemoglobin, the most abundant 
protein in vertebrate blood, results in the generation 
of amino acids and heme, which may be toxic or even 
lethal [150, 151]. For example, under laboratory breed-
ing conditions, signs of death of cells or even organisms 
given blood meals were observed [152, 153]. In order to 
maintain homeostasis, several mechanisms have been 
developed to neutralize toxic molecules in blood-feeding 
animals [154, 155]. It is reported that in Ae. Aegyptigiven 
blood meals, expression level of autophagy-related genes 
significantly increases [156]. Autophagy has also been 
shown to be a survival factor and involved in protecting 
epithelial cells from the toxic molecules caused by blood 
degradation in leeches [153].

In the previous studies, numerous vesicles with an 
electron-dense content in cytoplasm of midgut cells in 
Piscicola geometra were observed. They were originally 
described to be involved in the enzyme accumulation 
[157]. However, further study showed that the electron-
dense content is formed by residual bodies of autolys-
osomes [153]. It was observed that autophagy occurred 
in all regions of digestive system (esophagus, crop, poste-
rior crop caecum, and intestine) in adult non-feeding and 
feeding specimens. During autophagy, the autophago-
somes engulfing the damaged organelles fused with lys-
osomes to form autolysosomes. Then cell membrane was 
disrupted by the accumulation of autophagosomes, autol-
ysosomes or residual bodies, releasing autophagosomes, 
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autolysosomes or residual bodies into midgut lumen. In 
digestive cells, autophagy occurred only in about 10–30% 
of cells before blood feeding, and was significantly up-
regulated during and after bloodfeeding, compared with 
juvenile and non-feeding specimens, in which the pro-
cess was absent. This suggests that autophagy is involved 
in the neutralization of toxic molecules caused by blood 
digestion in midgut epithelium of adult leeches.

Conclusion
The identification ofautophagic process and a number of 
orthologs of ATGs in planarian, hydra and leech suggest 
that autophagy is evolutionarily conserved from yeast to 
mammals. Phylogenetical analysis of ATG proteins sug-
gests that ATG proteins involved in ATG8 and ATG12 
ubiquitin-like conjugation systems share high identity 
with their homologs, indicating that they might originate 
from a common ancestor. Distant homologs of ATG pro-
teins were also found in both planarian and hydra, sug-
gesting that they might have different functions. Notably, 
compared to D. melanogaster, C. elegans and S. cer-
evisiae, HvATGs show a higher identity with H. sapiens 
and M. musculus, suggesting that hydra can be used as a 
powerful model for uncovering the role of autophagy in 
human diseases.

Understanding the mechanisms of regenerative pro-
cess has a clinical interest due to its effectiveness in 
many treatments for tissue repair and age-related dis-
eases. Autophagy is strongly activated not only in starv-
ing planarians and hydras but also during regeneration. 
In leeches, autophagy is involved in the neutralization of 
toxic molecules caused by blood digestion. The results 
discussed above suggest that autophagy also plays a role 
in these three organisms when it can contribute to the 
regeneration and maintenance of cellular homeostasis. 
However, the control mechanisms of autophagy remain 
unclear, and the analysis of the relationship between 
autophagy and regeneration will provide a more com-
prehensive view of therapeutic strategies for human 
diseases.
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