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Abstract 

The capacities for neural stem cells (NSCs) self-renewal with differentiation are need to be precisely regulated for 
ensuring brain development and homeostasis. Recently, increasing number of studies have highlighted that long 
non-coding RNAs (lncRNAs) are associated with NSC fate determination during brain development stages. LncRNAs 
are a class of non-coding RNAs more than 200 nucleotides without protein-coding potential and function as novel 
critical regulators in multiple biological processes. However, the correlation between lncRNAs and NSC fate decision 
still need to be explored in-depth. In this review, we will summarize the roles and molecular mechanisms of lncR-
NAs focusing on NSCs self-renewal, neurogenesis and gliogenesis over the course of neural development, still more, 
dysregulation of lncRNAs in all stage of neural development have closely relationship with development disorders 
or glioma. In brief, lncRNAs may be explored as effective modulators in NSCs related neural development and novel 
biomarkers for diagnosis and prognosis of neurological disorders in the future.
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Introduction
In the central nervous system (CNS), stringently regula-
tory mechanism is essential for proper neural stem cells 
(NSCs) related development and functions. Recently, 
epigenetic modulators, especially long non-coding RNAs 
(lncRNAs) are found to be crucial for the maintenance 
of NSCs related biological activity. This review aims to 
introduce the functions and regulatory mechanism of 
lncRNAs in NSCs self-renewal and differentiated into 
neurons or/and glial cells.

Neural stem cells
As a dynamic organ, vertebrate brain possesses the 
capacity of structural plasticity upon a variety of physi-
ological, pathological and pharmacological stimuli owing 
to proliferation and differentiation ability of NSCs [1, 2]. 
Amazing huge number of neurons and glial cells consti-
tuting the cortex are generated from the differentiation 
of NSCs, which are able to self-renewal and major yield 
three forms of neural cells including neurons, astrocytes 
and oligodendrocytes in the brain [3], that the process of 
producing neurons and glial cells are termed neurogen-
esis and gliogenesis, respectively [4].

NSCs use symmetric divisions for adult neural pre-
cursor/progenitor cells (NPCs) amplification and asym-
metric divisions for sequentially producing the right 
quantity of neurons and/or ultimately transition to glio-
genesis sustaining postnatally [1, 4]. The largest NSCs 
niches throughout life are predominantly located in the 
subventricular zone (SVZ) nearby the lateral wall of the 
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lateral ventricles and the sub-granular zone (SGZ) of hip-
pocampus dentate gyrus (DG) [5]. The neuroblasts from 
NSCs in SVZ migrate along the rostral migratory stream 
(RMS) to the olfactory bulb (OB), where they terminally 
differentiate into local interneurons [6]; meanwhile, neu-
roblasts from NSCs in SGZ migrate short distances into 
the granule cell layer and mature into neurons, then inte-
grate into functional circuit [7].

NSCs persist in the embryonic stage and in the spe-
cific area of the brain during adulthood [8]. However, it 
is still controversy whether adult neurogenesis occurs 
and even persist throughout lifetime. Some stud-
ies implied that proliferating progenitors and young 
neurons in the dentate gyrus (DG) sharply declined 
in the first year of life, only a few isolated young neu-
rons were detected in the young and no young neurons 
were observed in DG [9, 10], whereas some others con-
sidered as hundreds of new neurons generated in each 
hippocampus/day in adult humans [11], and similar 
numbers of intermediate neural progenitors and thou-
sands of immature neurons in the DG from young to 
older [12]. Undoubtedly, the generation of a certain 
number of neuronal progenitors from NSCs and then 
differentiation into neurons and/or glial cells are associ-
ated with brain development and changed in neurologi-
cal disorders [13].

LNCRNAs
As the rapid progress of next-generation sequencing 
technologies, a large amount of lncRNAs were discovered 
and identified as essential modulators in fundamental 
biological processes, although they were initially con-
sidered as “noise” of genome. LncRNAs are a sub-class 
of non-coding RNAs transcripts longer than 200 nucle-
otides with 5ʹm7G caps and 3ʹ poly (A) in tails, which 
are generated by RNA polymerase II but lack canonical 
protein-coding capacity [14, 15]. Clark et  al found that 
majority of lncRNAs exhibit widely stabilities similar to 
that of mRNA, while the mean value of lncRNA half-life 
was 4.8  h that slightly less than the mean value of pro-
tein-coding transcripts (7.7 h) [16].

LncRNAs originate from various gene coding or non-
coding locations including intergenic regions, introns, 
enhancers, promoters, exons, either with a partial over-
lap with protein-coding exons in both directions [17, 18]. 
They organize gene expression in the context by recruit-
ment of regulatory proteins, modulation and modifica-
tion of chromosomes at transcriptional level, controlling 
RNA splicing, acting as a “sponge” of miRNAs to regulate 
RNA degradation at post-transcriptional level and also 
participate in cytoplasm and nuclear trafficking or cell 
differentiation [18, 19].

Accounting for 40% differentially expressed lncRNAs 
in human genome are specific to the brain, which involve 
in 4000–20,000 lncRNA genes [20]. LncRNAs have been 
reported be located in different brain cell types, such as 
neuron, glial cells and vascular cells, and playing cru-
cial biofunction in the different brain cells [21]. In addi-
tion, lncRNAs are abundantly expressed in the particular 
NSCs generated regions of SVZ, DG or Striatum, which 
implies the crucial functional roles of lncRNAs in NSCs 
self-renewal, pluripotency, proliferation and differentia-
tion [22–24]. The major goal of this article is to demon-
strate the cell type-specific expression and functions of 
lncRNAs focusing on NSCs self-renewal, neurogenesis 
and gliogenesis over the course of neural development 
(Fig. 1).

The effect of lncRNA on NSCs/NPCs self‑renewal 
and proliferation capacity
As one type of multipotent cells, NSCs possess a sig-
nificant capacity for proliferation and self-renewal, 
which are essential for maintenance of CNS homeosta-
sis [25], moreover, they also can be derived from totipo-
tent stem cells and various pluripotent cells in vitro [26, 
27]. Although the underling regulatory mechanism still 
remains unknown, recently, some evidence implied that 
lncRNA may emerge as a modulator in NSCs self-renewal 
and proliferation (Table 1). For instance, overexpression 
of lncRNA Trincr1 (TRIM71 interacting long noncoding 
RNA 1) suppressed the self-renewal of NPCs via restrain-
ing fibroblast growth factors (FGF)/extracellular signal 
regulated kinase (ERK) signaling pathway, which is essen-
tial for cell self-renewal [28, 29]. Furthermore, NPCs were 
increasingly transplanted from pluripotent stem cells for 
treatment neurological development disorders [26, 30]. 
LincRNA1230 was able to markedly block mouse ESCs 
transformation into NPCs, mechanistically, it restrained 
the combination of WD repeat domain 5 (Wdr5) to the 
promoter regions of neural lineage-associated genes via 
reducing enrichment of the H3K4me3 (tri-methylation of 
histone3 lysine4) modification at these loci [31].

Glioblastoma stem-like cells (GSCs) exhibit the stemness 
properties of stem cell including self-renewing capabil-
ity and multipotency [32], which progression and self-
renewal are able to be modulated by lncRNAs. LncRNA 
linc00115 activated by Transforming Growth Factor-β 
(TGF-β), lncRNA TUG1 activated by notch receptor 
(Notch), linc00152 and lncRNA ZNF281 were newly iden-
tified lncRNAs that participated in controlling self-renewal 
and proliferation in GSCs via sponging of miR-200  s, 
sponging of miR-145, sponging of miR-103a-3p and tar-
geting NF-κB1 signalling pathway, respectively [33–36]. 
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Moreover, lncRNA tumor associated lncRNA expressed in 
chromosome 2 (TALNEC2) and linc01198 were also found 
to promote self-renewal and progression of GSCs [37, 38]. 
Thus, lncRNA maybe a novel potential therapeutic strategy 
for glioblastoma therapy.

The function of lncRNAs in neurogenesis/neural 
differentiation
Neurogenesis is a dynamic process associated with NSCs 
and NPCs differentiation into newborn neurons, which 
integrate into the local neural network in the mammalian 
CNS [39]. This process is a well-orchestrated sequence of 

Fig. 1 Schematic representation the regulatory networks of lncRNAs in major biology activities during brain developmental process. It was 
depicted in details that lncRNAs contribute to NSCs self-renewal, neurogenesis/neuronal differentiation, neurodevelopmental disorders and 
gliogenesis major emerging as sponging of miRNAs, crucial regulators in signaling pathway and targeting proximal gene expression

Table 1 The functional characterization of lncRNAs on neural related stem cells self‑renewal

LncRNA name Mechanism Biological function References

Trincr1 Restrain FGF/ERK signalling Suppress NPCs self-renewal [28, 29]

LincRNA1230 Interact with Wdr5 Block ESCs transformation into NPCS [31]

Linc00115 Activated by TGF-β, miR-200 s/ZEB1, miR200s/ZNF596/EZH2/STAT3 Promote GSC self-renewal [33]

TUG1 Activated by Notch, sponging of miR-145 and recruiting polycomb via YY1 Promote GSC self-renewal [34]

Linc00152 miR-103a-3p/FEZF1 axis Promote GSC proliferation [35]

ZNF281 NF-κB1 pathway Inhibit GSC self-renewal [36]

TALNEC2 Regulated by E2F1, miR-21/miR-191 Promote GSC self-renewal [37]

Linc01198 Enhancing the NEDD4-1-dependent inhibition of PTEN Promote glioma proliferation [38]
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complex biological and molecular event major including 
NPCs or NSCs proliferation and differentiation during pre- 
and post-natal brain development, which major occurs in 
SVZ and SGZ in DG of hippocampus [6, 40, 41].

Recently, as a partial of the mammalian genome, lncR-
NAs have emerged as crucial epigenetic regulatory ele-
ments implicated in NPCs or NSCs differentiation and 
neural development [40, 41]. Intricate expression regula-
tion of lncRNAs in time and space is a crucial event in the 
developing CNS [42]. A quantity of lncRNAs are present 
abundantly in certain neurogenic cell-types or the specific 
functions in development and cellular identity in the nerv-
ous system [43, 44]. Furthermore, 13 lncRNAs temporally 
exhibiting neurogenic cell types specificity and hallmarks 
of RNA processing, have been noted in the purified neu-
ral cell types across consecutive time course overlap critical 
events in neurogenesis in Drosphila, proving that expres-
sions of lncRNAs are highly dynamic and demarcates par-
ticular subpopulations within neurogenic cell types in CNS 
[45]. Interestingly, lncRNAs showed an adaptive function 
in the evolution of neurogenesis due to selective loss in the 
evolutionary time [46]. Actually, lncRNA was a key deter-
minant in NSCs or NPCs during cell-fate determination, 
moreover, distinct lncRNA types are involved in the differ-
ent situations of neurogenic precursor or stem cell differen-
tiation. For instance, divergent lncRNAs have partiality for 
neuronal differentiation while sense downstream lncRNAs 
are more associated with astrocytic differentiation in NPCs 
or NSCs [47]. Moreover, lncRNAs can also participate in 
regulation the fate of NSC differentiation into glia and neu-
rons in the physiology and pathological condition [48, 49]. 
In hence, it is still need to be discussed that lncRNAs how 
to play a role in neurogenesis/neuronal differentiation or 
gliogenesis (Table 2). Elaborating the underlying regulatory 
mechanism of neural differentiation is benefits for study-
ing neural development or acquiring NSCs for diseases 
treatment.

The function of lncRNAs on promoting neuronal 
differentiation
LncRNAs meet a requirement for neuronal differentia-
tion and are considered to be indispensable for neuro-
genesis. They are specific to the brain region, especially 
SVZ, DG or OB, highly expressed during neuronal dif-
ferentiation, and always exert their functions via inter-
acting with transcription factor or neighboring genes on 
the same chromosome, acting as competing endogenous 
RNA (ceRNA) of miRNA and target protein or emerging 
as key signaling pathway modulators.

Effect on neighboring genes expression
LncRNAs are able to control neural development via 
influencing proximal protein-coding genes expressions. 

LncRNA Sox1 overlapping transcript (Sox1ot) and Sox2 
overlapping transcript (Sox2ot) locating in nucleus are 
evolutionarily conserved lncRNAs that transcriptionally 
overlaps the Sox1 and Sox2, respectively, and considered 
as crucial modulators in the developing brain [50, 51]. 
Sox1 and Sox2 are transcription factors which associated 
with maintaining the stemness of pluripotent stem cells 
and NSCs [52]. Sox1ot and Sox2ot are highly expressed 
during neural development and link with Sox1 and Sox2 
expression levels, respectively [53, 54]. Androgen recep-
tor (AR),a transcription regulator in early embryonic 
stage, modulates lncRNA Sox2ot expression by interact-
ing with Sox2 upstream DNA binding region at tran-
scription level [55]. LncRNA Sox2ot prohibited NSCs 
proliferation and advanced neuronal differentiation 
by interacting with the transcriptional regulator YY1, 
which bind to CpG island in the Sox2 locus to suppress 
the expression of Sox2 [54]. LncRNA rhabdomyosar-
coma 2-associated transcript (RMST) was considered to 
be indispensable for neurogenesis when its absence lead 
to more than 1000 genes differentially expression major 
via facilitating Sox2 binding the promoter regions and 
regulating the target genes [56]. In addition, lncRNA 
Kdm2b divergently transcribed from the same promoter 
bidirectional with Kdm2b and dispersed chromatin envi-
ronment via binding hnRNPAB, then activated its nearby 
coding gene-Kdm2b expression for facilitating neuronal 
differentiation in early neurogenesis cortical projection 
neurons [57]. LncRNA Paupar divergently transcrip-
tion from upstream of Pax6 participates in regulation of 
neural differentiation and OB neurogenesis via binding 
with local genes-Pax6 and KAP1 in cis-manner, as well as 
modulation the activity of various transcriptional regu-
latory elements on different chromosomes distinguish-
ing from its synthesis locus and alteration of chromatin 
occupancy and H3K9me3 deposition [58, 59].

Acting as ceRNA of miRNA
MiRNAs as a group of short non-coding RNAs (approxi-
mately ~  22 nucleotides long) suppressing coding gene 
translation are abundant in the nervous system and par-
ticipate in all stage of neural differentiation during brain 
development [60]. LncRNAs could participate in neural 
development via emerging as ceRNA of miRNA and indi-
rectly regulate gene expression in the cytoplasm [61, 62]. 
Several differentially expressed lncRNAs interacting with 
miR-30e-3p, miR-431 and miR-147 were determined by 
microarray analysis in hippocampal pool. Among these 
lncRNAs, Gm21284 was identified by function as a 
ceRNA to enhance the proportion of CHAT-positive cells 
during NSCs differentiation [63]. LncRNA 1604 silenc-
ing suppressed neural differentiation through acting as 
sponge of miR-200c to regulate the key transcription 



Page 5 of 10Zhao et al. Cell Biosci           (2020) 10:74  

factors zinc finger E-box binding homeobox  1/2 
(ZEB1/2) [61]. Moreover, lncRNA transcript could gen-
erate several variants to execute functions in neurogen-
esis. LncRNA C130071C03 Riken variants-Rik-201 and 
Rik-203 were also considered as modulators in the devel-
oping brain via being activated by neurogenesis related 
transcript protein CCAAT/enhancer-binding protein β 
(C/EBPβ). Suppression of Rik-201 and Rik-203 restrained 
neural differentiation via acting as ceRNAs of miR-96 and 
miR-467a-3p, respectively, which deinhibition restricted 
the expression of neural differentiation-related gene 
Sox6 [64]. Sevoflurane was also reported to attenuating 
the expression of lncRNA Rik-203 that resulted in the 
release of miR-101-3a but lessening Glycogen Synthase 
Kinase-3β (GSK-3β) level, ultimately inhibited neural dif-
ferentiation [65]. Furthermore, miR-128-3p is abundantly 
expressed in brain and emerges as a key modulator in 
neural differentiation, which overexpression prohibited 
neuron but enhanced gliocytes differentiation. LncRNA 
MEG3 participated in promotion of neuron differentia-
tion via emerging as a negative modulator of miR-128-3p 
while elevated by the cAMP/response element-binding 
protein (CREB) pathway [66].

Emerging as key signalling pathway modulators
LncRNAs could also contribute to neural differentia-
tion emerging as a pivotal member of signaling pathway. 
Neurite outgrowth is a core event in early neuronal 

differentiation and regeneration stage. The lncRNA 
Metastasis-associated lung adenocarcinoma transcript1 
(Malat1) was indispensable for neurite growth. Knock-
down of Malat1 blocked neurite outgrowth but advanced 
cell death via suppression Mitogen-Activated Protein 
Kinase (MAPK) signaling pathway comparable with 
stimulation of Peroxisome proliferator-activated receptor 
(PPAR) and p53 signalling pathway [67].

The role of lncRNAs on repressing neuronal 
differentiation
Compare to the above lncRNAs which be highly 
expressed and promoted neuronal differentiation, some 
other neuronal lncRNAs were revealed to be down-
regulated in CNS and blocked neuronal differentia-
tion. LncRNA Pnky, being considered as the first known 
neuronal development inhibitor as its expression was 
decreased when V-SVZ NSCs differentiation into neu-
ronal cells, forming a complex with splicing factor and 
RNA-binding protein (RBP)-polypyrimidine tract-bind-
ing protein (PTBP1) participated in regulation of NSCs 
differentiation to neurons via controlling alternative 
splicing. Knockdown of either pnky or PTBP1 expres-
sion could strengthen neurogenesis, which both elic-
ited a splicing program in cultured post-natal V-SVZ 
NSCs to mature neurons [3, 68]. Maria et  al discovered 
the lncRNA lncR492 as a lineage-specific inhibitor of 
neuroectodermal differentiation through interaction 

Table 2 The roles of lncRNAs on NSCs differentiation/neurogenesis and oligodendrogenesis

LncRNA name Mechanism Biological function References

Sox2ot Link with Sox2, interact with YY1 Prohibit NSCs proliferation and advance neuronal differentia-
tion

[54]

RMST Target Sox2 Promote neurogenesis [56]

Kdm2b Bind with hnRNPAB and activate Kdm2b gene expression Promote neurogenesis [57]

Paupar Bind with local genes-Pax6 and KAP1 Promote neurogenesis [58, 59]

Gm21284 Interact with miR-30e-3p, miR-431 and miR-147 Inhibit NSCs proliferation while promote NSCs differentiation [63]

1604 miR-200c/ZEB1/2 axis Promote neural differentiation [61]

Rik-201 Activated by C/EBPβ, miR-96/Sox6 Enhance neural differentiation [64]

Rik-203 miR-467a-3p/Sox6, miR-101-3a/GSK-3β Enhance neural differentiation [64, 65]

Malat1 Activate ERK/MAPK, inhibit PPAR/p53 Promote neural differentiation [67]

Pnky Interact with PTBP1 Inhibit neural differentiation and neurogenesis [3, 68]

lncR492 Interact with HuR and activate Wnt signalling Inhibit neural differentiation [69]

BDNF-AS Targeting TrkB signaling pathway Inhibit eNSCs-derived neurite outgrowth [70]

UCA1 miR-1/Hes1 Promote NSCs differentiation to astrocyte but neuron [48]

OPC Regulated by OLIG2 Promote oligodendrogenesis [87]

lncOL1 Form a complex with Suz12 Promote oligodendrogenesis [90]

lnc158 Promote NFIB expression Promote oligodendrogenesis [91]

Pcdh17it Oligodendrogenesis marker [92]

OLMALIN/-AS Regulate oligodendrocyte maturation [93]
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with mRNA binding protein HuR and activation of Wnt 
signaling pathway [69]. Furthermore, the enhanced 
expression of lncRNA brain derived neurotrophic factor 
antisense (BDNF-AS), which is an antisense RNA that 
inhibition of BDNF expression in neural growth, was 
able to inhibit neurite growth in ketamine treated mouse 
embryonic NSC-derived neurons via activating potas-
sium uptake system protein (TrkB) signaling pathway 
[70].

The effect of lncRNA on neurodevelopmental 
disorder via targeting NSCs/NPCs proliferation 
and differentiation
Addition to be as critical determinant for neuronal dif-
ferentiation or neurogenesis in NSCs or NPCs, lncRNAs 
are also acting as pivotal regulatory molecules in several 
neurodevelopmental related diseases including Hunting-
ton’s disease (HD) [71], Autism spectrum disorder (ASD) 
[72], Angelman syndrome (AS) [73], vascular disorders 
induced ischemic stroke [74, 75]. LncRNA Tcl1 Upstream 
Neuron-Associated lincRNA (TUNA) was found to be 
associated with HD, which function for maintenance of 
pluripotency and neural differentiation by interaction 
with three RBPs [71]. Furthermore, lncRNA FMR4 origi-
nating from Fragile X mental retardation 1 (FMR1) locus, 
which aberrant expansion causes autism [76], was able to 
improve hNPCs development, furthermore, dysregula-
tion of FMR4 contributed to the pathophysiology Fragile 
X syndrome and/or Fragile X tremor/ataxia syndrome 
[77]. In addition, lncRNA ribosomal protein S10 pseudo-
gene 2 anti-sense 1 (RPS10P2-AS1), moesin pseudogene 
1antisense (MSNP1AS) and FMR4 were identified that 
contributed to another neurodevelopmental disorder-
Autism spectrum disorder (ASD) risk [72, 77–79]. The 
expression of RPS10P2-AS1 was elevated in postmor-
tem temporal cortex of patients with ASD as well as in 

NPCs upon to ASD-associated diesel particular matter, 
which implied the close relationship between RPS10P2 
with ASD risk [78]. LncRNA MSNP1AS expression was 
elevated in the postmortem cerebral cortex of individu-
als with ASD, which was mimicked by overexpression of 
MSNP1AS in human NPCs reduced neurite number and 
neurite length by disrupting moesin protein level, when 
knockdown of MSNP1AS blocked 318 genes expres-
sion, most of which participating in chromatin organiza-
tion and immune response [72, 79]. Moreover, lncRNA 
C21orf121 overexpression promoted conversion of stem 
cells from human exfoliated deciduous teeth into neu-
ronal cells via acting as ceRNA of miR-140-5p to regulate 
BMP2 expression, which may provide a new therapeutic 
tool for ASD [80] (Table 3).  

Furthermore, lncRNAs are involved in angiogenesis 
that NPCs in SVZ and SGZ migration to ischemic zone 
for restoration of blood supply after ischemic stroke [81]. 
One of the earliest identified lncRNA H19 executed a 
negative function in chronic regeneration to inhibit neu-
rogenesis process after ischemia stroke via inhibition 
p53/Notch1 signalling pathway [74]. Similarly, lncRNA 
Meg3 also played a reversely effect on brain injury recov-
ery and its absence improved nervous tissue impairment 
and promoted angiogenesis by triggering Notch pathway 
and Wnt/β-catenin signaling pathway [75, 82].

The role of lncRNAs in modulation of gliogenesis
As well known, except for neurons, NSCs can gradually 
alter their characteristics to generate astrocytes and oli-
godendrocytes in the CNS, which termed as “gliogenesis” 
[83, 84]. At initial phase of cortical development, NSCs or 
NPCs sequentially produce deep layer neurons followed 
by surficial layer neurons; at later phase, NSCs suspend 
neurogenesis and shift to gliogenesis to gain gliogenic 
competence [84, 85]. The timing of NSCs transition from 

Table 3 The major roles of lncRNAs in neurodevelopmental disorders

LncRNA name Mechanism Biological function Disease References

TUNA Interact with RBPs Promote neural differentiation HD [71]

FMR4 Derived from FMR1 locus Promote hNPCs proliferation Fragile X syndrome [77]

RPS10P2-AS1 Interact with RPS10P2 ASD [78]

MSNP1AS Regulate chromatin organization and 
immune response related gene

Inhibit neural differentiation ASD [72, 79]

C21orf121 miR-140-5p/BMP2 Promote neurogenesis ASD [80]

H19 p53/Notch1 pathway Block neurogenesis Ischemic stroke [74]

Meg3 Notch or Wnt/β-catenin signaling 
pathway, miR-128-3p/ATRA/cAMP/
CREB axis

Promote neurogenesis/neural dif-
ferentiation

Ischemia-reperfusion injury [75, 82]

NEAT1 Associated with Wnt signaling Promote oligodendrogenesis Schizophrenia [94]

HOTAIR miR-136-5p/AKT2-NF-κB Demyelination [95]
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neurogenesis to gliogenesis must be stringently con-
trolled to ensure proper cortical development [84, 86]. 
Several lncRNAs are considered as crucial modulators 
during neuronal-glial fate specification and oligoden-
drocyte lineage maturation. LncRNA human urothelial 
carcinoma associated 1 (UCA1) was able to decide the 
differentiation direction of NSCs, when UCA1 silenc-
ing prohibited NSCs proliferation and differentiation to 
astrocyte but strengthen to neuron due to the enhance-
ment of miR-1 expression but decrease expression of its 
target gene-Hes1 [48]. Moreover, some lncRNAs showed 
key functions for the fate of NSCs differentiate into glia 
and neurons exposure to hyperthermia [49]. Dong et al. 
screened 5000 lncRNAs to predict their roles in brain 
development and identified a highly conserved lncRNA-
lnc-OPC. The expression of lnc-OPC, which upstream 
regulatory elements interaction with OLIG2, was dra-
matically enhanced in oligodendrocyte precursor cells 
(OPC) and contributed to OPC differentiation and oligo-
dendrogenesis [87].

Myelination by oligodendrocytes is a vital event in the 
development and function of CNS and can be regulated 
by genetic and epigenetic factors including lncRNAs 
[88, 89]. The dynamic expression profiles of lncRNAs at 
different phases of oligodendrocyte growth were deter-
mined and then picked out a conserved chromatin-asso-
ciated lncRNA-lncOL1. The gain of function of lncOL1 
enhanced precocious oligodendrocyte differentiation in 
neural development via forming a complex with a com-
ponent of polycomb repressive complex 2 (Suz12), which 
is an oligodendrocyte maturation promoter [90]. Over-
expression of lnc158 in NSCs promoted several oligo-
dendrocyte-related genes expressions and strengthened 
induction of oligodendrocyte lineage differentiation via 
positively modulation of an organ development regula-
tory factor-nuclear factor-IB (NFIB) [91]. In addition, 
an immature OL-specific lncRNA Pcdh17it was proved 
to be a novel biomarker for newborn immature OLs in 
the brain development [92]. Interestingly, lncRNA oli-
godendrocyte maturation-associated long intervening 
non-coding RNA (OLMALINC) has an identical expres-
sion type with its antisense counterpart, OLMALINC-
AS, both abundantly expressed in the white matter of 
human frontal cortex and played vital roles in regula-
tion of human oligodendrocyte maturation related genes 
[93]. In addition, oligodendrocyte-related abnormalities 
associated with developmental disorder including schiz-
ophrenia and demyelination are also regulated by lncR-
NAs [94, 95]. The expression levels of lncRNA NEAT1 
was reduced in the brain of patients with schizophrenia 
and loss of NEAT1 influenced multiple oligodendrocytes 
cell differentiation related genes that caused population 
of oligodendrocytes-lineage cells diminishment during 

brain development [94]. LncRNA HOTAIR acting as 
ceRNA of miR-136-5p and AKT2-NF-κB was repressed 
and unbeneficial for repair impairment of cuprizone-
induced demyelination [95]. Thus, lncRNAs indeed plays 
important functions in modulation of OL mature and oli-
godendrogenesis during brain development stage.

Conclusion
Neural development related to NSCs/NPCs is considered 
as a huge complicate biological event. As advanced large-
scale genome-wide sequencing analysis, more tissue-spe-
cific expression of lncRNAs were identified as essential 
modulators in fundamental neural developing biological 
processes. Most of their function remains to be explored, 
more novel lncRNAs and their molecular mechanisms 
remain to be found and probed in-depth yet. This review 
has described in detail the dramatically functional roles 
of lncRNAs in regulation of NSCs/NPCs self-renewal, 
proliferation and differentiation into neuron or glial cells, 
moreover, dysregulation of lncRNAs in all stage of neu-
ral development have closely relationship with develop-
ment disorders or glioma. This suggest that lncRNAs 
have great potential to be applied in diagnosis, progno-
sis and treatment of neurodevelopmental disorders, still 
more, based on the features of their structural motifs, 
stability, easy-detectable and gene regulatory network, 
lncRNAs might be also employed as potential selection 
bio-markers for identifying or screening suitable NPCs/
NPCs. With the deep-going study in the future, it will 
open a new era of lncRNA based NSCs proliferation and 
differentiation regulatory mode and neural development 
disorders therapy targets.
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