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Dysregulated transcriptional and post-translational
control of DNA methyltransferases in cancer
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Abstract

Cancer is a leading cause of death worldwide. Aberrant promoter hypermethylation of CpG islands associated with
tumor suppressor genes can lead to transcriptional silencing and result in tumorigenesis. DNA methyltransferases
(DNMTs) are the enzymes responsible for DNA methylation and have been reported to be over-expressed in various
cancers. This review highlights the current status of transcriptional and post-translational regulation of the DNMT
expression and activity with a focus on dysregulation involved in tumorigenesis. The transcriptional up-regulation of
DNMT gene expression can be induced by Ras-c-Jun signaling pathway, Sp1 and Sp3 zinc finger proteins and virus
oncoproteins. Transcriptional repression on DNMT genes has also been reported for p53, RB and FOXO3a transcriptional
regulators and corepressors. In addition, the low expressions of microRNAs 29 family, 143, 148a and 152 are associated
with DNMTs overexpression in various cancers. Several important post-translational modifications including acetylation
and phosphorylation have been reported to mediate protein stability and activity of the DNMTs especially DNMT1. In
this review, we also discuss drugs targeting DNMT protein expression and activation for therapeutic strategy against
cancer.
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Introduction
Cancer is a leading cause of death worldwide, accounting
for 8.2 million deaths in 2012 [1]. The process of tumori-
genesis needs to be initiated and promoted by molecular
abnormalities including oncogenes activation and tumor
suppressor genes (TSGs) inactivation [2]. Methylation
of CpG islands is one of the epigenetic modifications
in mammalian genome that modulates gene expression
without changes in the DNA sequence [2]. Aberrant
promoter hypermethylation of CpG islands associated
with TSGs can lead to transcriptional silencing and result
in tumorigenesis. DNA methylation is frequently not
restricted to a single CpG island but affects multiple
independent loci, reflective of a widespread deregulation
of DNA methylation pattern in different types of tumors
[3,4]. Development of genome-wide high-throughput
technologies has facilitated the identification of global
DNA methylation pattern [5,6]. For example, genomic
screening of 98 different primary human tumors has
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revealed that on an average there exist about 600 aberrantly
methylated CpG islands in each tumor [7]. In addition,
an increase of methylation variability may contribute
to tumor heterogeneity [8]. Collectively, dysregulation
of DNA methylation is apparently one of the major
barriers to effective cancer diagnosis and treatment in
different types of cancer.
Epigenetic disorders give rise to several significant

human diseases including various cancers, neuron disorder,
psychosis, and cardiovascular diseases, many of which are
associated with altered expression and activity of DNA
methyltransferases (DNMTs) [9-13]. DNMTs are the en-
zymes responsible for DNA methylation through transfer
of methyl group to cytosine residue of CpGs [2]. Five types
of DNMTs have been identified, viz. DNMT1, 2, 3A, 3B,
and 3L. DNMT1 comprises a large N-terminal domain
with regulatory function and a smaller C-terminal catalytic
domain [14]. The regulatory domain harbors different
motifs and is involved in the intracellular delivery and
regulation of catalytic activity of DNMT1. DNMT1 has
been shown to prefer hemimethylated over unmethy-
lated DNA 30- to 40-fold in vitro [15-17]. It is referred to
as a “maintenance” methyltransferase and is the primary
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enzyme responsible for copying the methylation patterns
after DNA replication. DNMT1 localizes to replication
foci and interacts with PCNA, a processivity factor for
DNA replication complex [18]. However, evidences show
that DNMT1 may also work together with DNMT3A
and DNMT3B in de novo methyltransferase activity in
certain genome in both embryonic cells and differentiated
somatic cells [19,20]. Many interacting proteins have been
reported to bind to their N-terminal region by biochem-
ical interaction assay [14]. For example, DNMT1 directly
interacts with histone modifying enzymes such as histone
H3K9 methyltransferase SUV39H1, histone H3K27 meth-
yltransferase EZH2, and histone deacytelase HDAC1 and
HDAC2 [14,21]. DNMT1 also interacts with methyl-CpG-
binding proteins such as MBD2, MBD3 and MeCP2 and
with the heterochromatin binding protein HP1 [14].
Notably, DNMT1, DNMT3A, and DNMT3B are over-

expressed in a coordinate manner in most tumor tissues
and at a significantly higher level in cancer than in
non-tumorous tissues [22-24]. The mechanism underlying
DNMTs overexpression is worthy of comprehensive discus-
sion. Delineating mechanisms of DNMTs overexpression
will provide more information and strategies to remedy the
altered epigenetic states. It will offer more exciting oppor-
tunities that can reactivate epigenetically silenced TSGs and
critical anti-cancer pathways [25].

Transcriptional regulation of DNMT gene expression
The earlier study on transcriptional regulation of DNMT
mediated by Ras-c-Jun signaling pathway provided a mo-
lecular explanation for the role of DNMT1 to carcinogen-
esis [26,27]. The expressions of DNMT1, DNMT3A and
DNMT3B genes are also controlled by Sp1 and Sp3 zinc
finger proteins [28,29]. Wilms' tumour 1 protein has been
shown to directly transactivate DNMT3A expression [30].
Homeobox B3 can bind to and activate DNMT3B gene
[31]. In addition to transcription factors, several important
transcriptional repressors have been reported to suppress
the DNMT1, DNMT3A and DNMT3B gene expression,
including p53, RB and FOXO3a (Table 1 and Figure 1).
The major findings are described below.

The p53-mediated regulation of DNMT genes
The tumor suppressor gene p53 encodes a transcription
factor that mediates many downstream effects such as
growth arrest and apoptosis through activation or repres-
sion of its target genes [46]. However, the p53 gene is a
frequent target of missense mutation rendering it unable
to recognize the p53 consensus binding sites therefore loss
of transcriptional function of p53 in cancers [47]. Se-
quencing analyses reveal that point mutation and small
intragenic deletion/insertion of p53 gene are significantly
associated with DNMT1 protein overexpression [32]. A
study shows that deletion of p53 in the HCT116 human
colon carcinoma cell line results in increase of DNMT1
mRNA and protein [48]. Wild-type p53 decreases DNMT1
promoter activity and expression level through the exon 1
region (−19 to +317) of DNMT1 promoter, which contains
p53 putative binding sites, in lung cancer cells [32,48].
In addition, wild-type p53 protein has been shown to
negatively regulate DNMT1 expression by forming a
complex with Sp1 protein and chromatin modifiers on
the DNMT1 promoter [32]. Low level of exogenous Sp1
expression enhances the repressive activity of endogenous
p53 on the DNMT1 promoter, whereas a high level of Sp1
expression upregulates DNMT1 gene expression level in
A549 (p53 wild-type) cells. In H1299 (p53 null) cells,
exogenous Sp1 induces DNMT1 expression in a dose-
dependent manner. A high level of Sp1, via its COOH-
terminal domain, induces interaction between p53 and
MDM2, resulting in degradation of p53 by MDM2-
mediated ubiquitination [32]. Clinical data from 102 lung
cancer patients indicated that overexpression of DNMT1
is significantly associated with p53 mutation and high
expression of Sp1 protein. In addition, patients with over-
expression of both DNMT1 and Sp1 proteins show poor
prognosis [32]. Cell and clinical data provide evidence
that deregulation of DNMT1 is associated with gain of
transcriptional activation of Sp1 and/or loss of repression
of p53. DNMT1 overexpression is involved in epigenetic
alterations of multiple TSGs that ultimately leads to lung
tumorigenesis and poor prognosis [32].
Some reports have also shown that Sp1 and Sp3 increase

the activity of DNMT1, DNMT3A, and DNMT3B pro-
moters by physical binding to their promoters in mouse
NIH3T3 cells or human embryonic kidney 293T cells
[28,29]. p53 is shown to suppress the promoter activity
and mRNA/protein expression of DNMT3A through
binding to its promoter and the suppression can be atten-
uated by knockdown of p53 [33]. Whether overexpression
of DNMT3A and DNMT3B resulted from the loss of
transcriptional regulation of p53/Sp1 warrants further in-
vestigation. It is justifiable to propose that overexpression
of DNMTs is associated with the gain of transcriptional
activation of Sp1 and/or the loss of repression of p53
(Figure 1A).

The RB-mediated regulation of DNMT genes
The RB (retinoblastoma) protein is a tumor suppressor,
which plays a pivotal role in the negative control of the
cell cycle and in tumor progression [49]. The RB protein
represses gene transcription, required for transition from
G1 to S phase, by directly binding to the transactivation
domain of E2F and by binding to the promoter of the
target genes as a complex with E2F [50]. RB also represses
transcription by remodeling chromatin structure through
interaction with proteins such as HP1, SWI/SNF, HDAC1
and SUV39H1, which are involved in DNA methylation,



Table 1 Transcriptional regulation of DNMT promoter activity and/or mRNA expression

Pathways Mechanisms DNMTs mRNA/promoters References

Down regulation

p53 p53/Sp1 transcriptional repression DNMT1/3A/3B [32]

RB/E2F RB/E2F transcriptional repression DNMT1/3A [33-36]

FOXO3a Transcriptional repression DNMT3B [37]

Up regulation

Ras/AP-1 AP1 transcriptional activation DNMT1 [26,27,38]

Sp1 Transcriptional activation DNMT1/3A/3B [28,29,32]

Sp3 Transcriptional activation DNMT1/3A/3B [28,29]

E2F Transcriptional activation DNMT1 [34,39]

ERK Unknow DNMT1/3A [40]

17β-estradiol ER-dependent transcription activation DNMT3B [41]

Homeobox B3 Promoter binding DNMT3B [31]

Wilms' tumour 1 Transcriptional activation DNMT3A [30]

Viruse induction

LMP1 Activation of JNK/AP-1 pathway DNMT1 [42]

BKV Tag and E1a pRB/E2F pathway DNMT1 [43]

HBx Promoter transcriptional activator DNMT1/3A [44]

HBx Promoter transcriptional repression DNMT3b [44]

HIV-1 Through transcription factor AP-1 DNMT1 [45]

LMP1: latent membrane protein 1.
BKV Tag and E1a: Human polyomavirus BKV large T antigen and adenovirus E1a.
HBx: Hepatitis B virus X protein.
HIV-1: early expressed HIV-1 proteins.
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nucleosome remodeling, histone deacetylation and histone
methylation, respectively [51-54].
The mouse and human DNMT1 promoters are found to

contain E2F binding sites that are required for RB/E2F
regulation in wtPrE (wild-type prostate epithelial cell line)
[34]. DNMT1 is negatively regulated by E2F-RB-HDAC
pathway in mouse NIH3T3 embryonic fibroblast, monkey
COS-7 kidney cell, and saos-2 human osteosarcoma cell
lines [35]. In addition, DNMT1 mRNA can be diminished
by overexpression of RB protein in saos-2 cells and are
induced by deletion of RB gene in wtPrE cells [34,35].
RB also suppresses DNMT3A promoter activity and
mRNA/protein expression through binding with E2F1
protein to the DNMT3A promoter [36]. Repression of
DNMT3A by RB leads to the decrease of methylation
level globally and TSG specifically, such as RARβ, FHIT,
and RASSF1A genes [36]. Together, these data suggest that
RB is a transcriptional repressor of DNMT1 and DNMT3A
genes (Figure 1B).

The FOXO3a-mediated regulation of DNMT genes
Forkhead O transcription factor 3a (FOXO3a) belongs to
a large protein family of transcriptional regulators charac-
terized by a conserved DNA-binding domain termed the
“forkhead-box” [55]. To date, many reports indicate a
tumor suppressor role for FOXO3a. For example, ectopic
overexpression of FOXO3a significantly impairs tumor
growth in cell and xenograft models in breast cancer and
promotes apoptosis in leukemia and prostate cancer cells
[56,57]. In addition, restrained transcriptional activity of
FOXO3a in cancer cells results in promoting angiogenesis
and tumor progression [58-60]. FOXO3a has been shown
to transcriptionally up-regulate apoptotic-related gene
such as p27kip [61], Bim [62], and Fas ligand [63]. In
contrast, FOXO3a could transcriptionally repress micro-
RNA21, which suppresses the expression of Fas ligand
[64]. Of note, the gene deletion of FOXO3a is found in
early-stage lung adenocarcinoma in smokers and tobacco
carcinogen-initiated lung tumors in mice [37,65]. Restor-
ation of FOXO3a in FOXO3a-deficient lung cancer cells
increases the cell apoptosis response to nicotine-derived
nitrosamino ketone-mediated DNA damage [66]. The
last-mentioned two studies implicate that loss of FOXO3a
may contribute to lung cancer pathogenesis.
We recently showed that FOXO3a negatively regulates

DNMT3B promoter activity by interacting with the binding
element FOXO3a (+166 ~ +173) of DNMT3B promoter
[67]. Ectopically overexpressed FOXO3a or combined
treatment with doxorubicin to induce FOXO3a nuclear
accumulation leads to further binding at the distal FOXO3a
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Figure 1 Transcriptional regulation on DNMT gene expression. (A) p53 transcriptionally suppresses DNMTs through binding with Sp1 protein
to the DNMT1, 3A and 3B promoters. (B) RB transcriptionally suppresses DNMT1/3A through binding with E2F1 protein to the DNMT1 and 3A
promoters. (C) FOXO3a binds to the FOXO3a DNA element of the DNMT3B promoter to repress DNMT3B transcription. (D) Clinically, overexpressed
MDM2 dramatically induces DNMT1, DNMT3A, and DNMT3B expression by negative control over p53, RB and FOXO3a leading to methylation of
multiple TSGs and tumorigenesis.
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site (−249 ~ −242). Abundant FOXO3a represses DNMT3B
promoter by establishing a repressed chromatin structure,
while knockdown of FOXO3a results in an open chromatin
structure and high DNMT3B mRNA and protein expres-
sion. Importantly, enforced abundant nuclear accumulation
of FOXO3a could decrease expression of DNMT3B with
synergistic inhibition of tumor growth and decrease in
methylation status on TSGs in human lung tumor xeno-
graft specimens [67]. It is plausible that FOXO3a binds to
the FOXO3a DNA element of the DNMT3B promoter to
repress DNMT3B expression (Figure 1C).

Transcriptional deregulation of DNMT genes by MDM2
overexpression
p53 protein is known to be degraded in cytoplasm by
ubiquitin-mediated proteasomal degradation pathway
modulated by MDM2 [68]. MDM2, an E3 ubiquitin ligase,
also physically interacts with RB and FOXO3a result-
ing in degradation of RB and FOXO3a proteins [69,70].
Overexpression of MDM2 has been demonstrated in
many human cancers [36,71]. In addition, oncogenic
ERK phosphorylates FOXO3a at Ser294, Ser344, and
Ser425 thereby enhancing the interaction with MDM2
and results in promoting degradation of FOXO3a [69].
Therefore, we hypothesized that MDM2 plays a critical
role in regulating the DNMT genes by synergistically
destabilizing p53, RB and FOXO3a proteins. To test
this hypothesis we analyzed the relationship of MDM2
protein with p53, RB, FOXO3a and DNMT proteins in
lung cancer cell, xenograft and patient models. Dra-
matic induction of DNMT3A and DNMT3B expression
by ectopic overexpression MDM2 suggests a negative
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control of MDM2 over RB and FOXO3a [36,67]. Note
that treatment with the MDM2 inhibitor, Nutlin-3, sig-
nificantly reduces DNMT3A and DNMT3B expression
and methylation of TSGs, as well as tumor growth in vivo
[36,67]. Clinically, MDM2 overexpression inversely corre-
lates with expression of p53, RB and FOXO3a proteins in
tumor tissues from lung cancer patients. Importantly, a
sub-group of patient with gene expression signature of
DNMTs high, p53/RB/FOXO3a low, and MDM2 high ex-
pression profile correlating with poor survival [33,36,67].
This defined signature may serve as a prognostic marker
in lung cancer patients whose genomic DNA may exert
promoter hypermethylation in multiple TSGs (Figure 1D).

The microRNA-mediated regulation of DNMTs
MicroRNAs (miRs) are small, noncoding RNAs that
regulate expression of many genes. Recent studies sug-
gest that abnormal expressions of miRs are involved in
pathogenesis of different types of human cancers [72].
Previous reports have shown that expression profiles
of miRs in lung cancer are different from normal lung.
The miR-29 family (29a, 29b, and 29c) has intriguing
complementarities to the 3'-UTRs of DNM3A and
DNMT3B [73]. The expression of miR-29s is inversely
correlated to DNMT3A and DNMT3B in lung cancer
tissues, and miR-29s directly target the 3'-UTRs of
both DNMT3A and DNMT3B. The enforced expression
of miR-29s in lung cancer cell lines restores normal pat-
terns of DNA methylation. The miR-29s further induces
re-expression of methylation-silenced TSGs, such as FHIT
and WWOX, and inhibits tumorigenicity in vitro and
in vivo [73]. Enforced miR-29b expression in acute mye-
loid leukemia cells also results in marked reduction in the
expression of DNMT1, DNMT3A, and DNMT3B and
ultimately to re-expression of p15INK4b and ESR1 via pro-
moter DNA hypomethylation [74]. Of note, an inverse
correlation between miR-29c expression and DNMT3A
and DNMT3B protein expression has been reported in
melanomas [75].
In addition to miR-29s, ectopic expression of miRNA-

148a in lung cancer cell lines also results in a significant
reduction in the expression of DNMT1 [76]. Using lucifer-
ase reporter assay, DNMT1 mRNA was found to be a tar-
get of miR-148b and miR-152 [77]. Antagomir-mediated
knock-down and re-expression of miRs assays support
that miR-148b, miR-29c, and miR-26b down-regulate
DNMT3B gene in breast cancer cells [78]. Furthermore,
overexpression of miR-148b and -152 in pancreatic cancer
cell lines decreases DNMT1 expression, restores normal
DNA methylation patterns and induces re-expression of
TSGs, like BNIP3 and SPARC [77]. It is to be noted that
miR-143 was reported to directly target DNMT3A. In
colorectal cancer tissues, the miR-143 expression was
observed to be inversely correlated with DNMT3A mRNA
and protein expression [79]. Specifically, miR-1741,
miR-16c, miR-222 and miR-1632 are found to influence
expression of DNMT3A or DNMT3B, possibly through
their 3′-UTR post-transcriptional regulation [80]. Table 2
summarizes the regulation of DNMTs by miRs.

Post-translational modification of DNMT proteins
Several important post-translational modification including
acetylation and phosphorylation have been reported to
mediate protein stability and activity of the DNMTs es-
pecially DNMT1 (Figures 2 and 3). The major findings
are described below.

Acetylation-mediated DNMT stability and activity
DNMT1 has been shown to be destabilized by acetylation-
mediated ubiquitination. DNMT1 physically interacts with
acetyltransferase Tip60, herpesvirus-associated ubiquitin
specific protease (HAUSP), ubiquitin-like containing PHD
and RING finger domains 1 (UHRF1), HDAC1 and PCNA
on chromatin [81]. Tip60 promotes acetylation of DNMT1,
which triggers ubiquitination by the E3 ligase UHRF1,
thereby targeting DNMT1 for proteasomal degradation
during late S phase [82]. Conversely, HAUSP and
HDAC1 protect DNMT1 from degradation through
deubiquitination and deacetylation, respectively [81]
(Figure 2A). In addition, the pleiotropic regulator of G
protein signaling (RGS) family member RGS6 facilitates
Tip60-mediated degradation of DNMT1 [83]. RGS6 may
serve as a scaffold of Tip60, DNMT1 and Dnmt1-
associated protein (DMAP1) to facilitate Tip60 acetylation
of DNMT1 and subsequent DNMT1 polyubiquitylation
and degradation [83] (Figure 2B). In contrast, the histone
deacetylase SIRT1 physically associates with DNMT1 and
deacetylates acetylated DNMT1 in vitro and in vivo [84].
Using mass spectrometry analysis, 12 new acetylated lysine
sites are identified in DNMT1 [85]. Deacetylation of dif-
ferent lysines on DNMT1 by SIRT1 has different effects
on the functions of DNMT1. For example, deacetylation
of Lys1349 and Lys1415 by SIRT1 in the catalytic domain
of DNMT1 enhances the methyltransferase activity of
DNMT1 (Figure 2C). Collectively, these findings suggest
that deacetylation of the identified acetylated lysine sites
in DNMT1 may be involved in the impaired activity of
DNMT1.

Phosphorylation-mediated DNMT stability and activity
Lin et al. found that the tobacco-specific nitrosamine
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in-
creases DNMT1 protein expression and activity [86].
Strong nuclear staining of DNMT1 protein in lung
tumor tissues is significantly associated with smoking
status of lung cancer patients [22,86]. Cigarette smoking
is a dominant risk factor for lung cancer. Among the
multiple components of tobacco smoke, 20 carcinogens



Table 2 Regulation of DNMT expression by miRNAs

Pathway Regulated regions DNMTs Cancer types References

miR-16c 3'-UTRs DNMT3B in vitro [80]

miR-26b ND DNMT3B breast cancer [78]

miR-29a 3'-UTRs DNMT3A/3B lung cancer [73]

miR-29b 3'-UTRs DNMT1/3A/3B lung, ALL and melanomas [73,74]

miR-29c 3'-UTRs DNMT3A/3B breast, lung and melanomas [73,75,78]

miR-143 3'-UTRs DNMT3A colorectal [79]

miR-148a ND DNMT1 lung and pancreas [76,77]

miR-148b ND DNMT3B breast cancer [78]

miR-152 ND DNMT1 pancreas [77]

miR-222 3'-UTRs DNMT3B in vitro [80]

miR-1632 3'-UTRs DNMT3B in vitro [80]

miR-1741 3'-UTRs DNMT3A in vitro [80]

ND: non-determined.
ALL: Acute lymphoblastic leukemia.

Figure 2 Acetylation-mediated DNMT stability and activity. (A) Tip60 promotes acetylation of DNMT1, which triggers ubiquitination by the
E3 ligase UHRF1, thereby targeting DNMT1 for proteasomal degradation. (B) RGS6 serves as a scaffold to facilitate Tip60 acetylation of DNMT1
and subsequent DNMT1 degradation. (C) Deacetylation of Lys1349 and Lys1415 by SIRT1 in the catalytic domain of DNMT1 enhances the
methyltransferase activity of DNMT1.
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Figure 3 Phosphorylation-mediated DNMT stability and activity. (A) Cigarette carcinogen NNK activates AKT, inhibits GSK3β-mediated
DNMT1 phosphorylation at Ser410 and Ser414, thereby leading to DNMT1 protein accumulation. (B) Phosphorylation of DNMT1 by PKCζ reduces
its methyltransferase activity. (C) Phosphorylation of DNMT1 at Ser154 by CDK1, 2 and 5 enhances enzymatic activity and protein stability of
DNMT1. (D) Phosphorylation of DNMT1 at Ser127 and/or Ser143 decreases its interaction with UHRF1 ubiquitin-like protein and renders DNMT1
less efficient to catalyze the DNA methyltransferase activity at the replication fork.
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convincingly cause lung tumors in laboratory animals or
humans. Of these, NNK is likely to play a major role
because NNK has been shown to induce lung tumor in
rats, mice and hamsters [87]. In addition, exposure of
NNK not only causes gene mutation, but also stimulates
the promoter hypermethylation on multiple TSGs in
bladder, liver, and lung cancers, including FHIT,
RASSF1A, and p16INK4A, DAPK1, RUNX3, RARβ and
SFRP genes [88-93]. Notably, NNK stimulates the AKT,
NF-κB, EGFR, and ERK1/2 signal pathways resulting in
increased cell proliferation and survival [94-96]. It has
previously been shown that AKT inactivates GSK3β
Ser/Thr kinase, which phosphorylates its substrate protein
and recruits the E3-ubiqutin ligase βTrCP, leading to
substrate degradation [97,98]. In addition, stabilization
of DNMT1 protein is regulated by inhibiting GSK3β-
mediated phosphorylation and proteasomal degradation
of DNMT1 upon activation of T cell receptor signaling
[99]. Lin et al. showed that GSK3β interacts with
DNMT1 to phosphorylate DNMT1 at Ser410 and Ser414
and promotes binding of DNMT1 by βTrCP leading to
proteasomal degradation of DNMT1. They also demon-
strated that DNMT1 contains a domain, ESGXXS, similar
to the conserved binding motif DSGXXS of βTrCP [86].
This study suggests that NNK activates AKT, then inhibits
GSK3β/βTrCP–mediated protein degradation, leading to
DNMT1 protein accumulation [86]. In addition, DNMT1/
βTrCP interaction could be interrupted by treating cells
with NNK. NNK also induces βTrCP translocation to the
cytoplasm by interacting with phosphorylated heteroge-
neous nuclear ribonucleoprotein U (hnRNP-U) shuttling
protein mediated by AKT. Therefore, NNK exposure re-
sults in DNMT1 nuclear accumulation and hypermethyla-
tion of the promoters of multiple TSGs [86]. Figure 3A
shows the phosphorylation-mediated DNMT stability con-
trol induced by the cigarette carcinogen NNK.
In addition to Ser410 and Ser414 of DNMT1, recent

studies have suggested that the enzymatic activity of
DNMT1 is possibly modulated by phosphorylation of
Ser/Thr residues located in the N-terminal domain of
the enzyme [100-102]. Protein kinase C (PKC) α, βI,
βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-
terminal domain of human DNMT1 [102]. Phosphoryl-
ation of DNMT1 by PKCζ reduces its methyltransferase
activity in vitro [102] (Figure 3B). In addition, phosphoryl-
ation of DNMT1 at Ser154 by CDKs, including CDK1, 2
and 5, is important to enhance enzymatic activity and pro-
tein stability of DNMT1 [100] (Figure 3C). AKT and PKC
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are capable of phosphorylating DNMT1 at the residues
Ser127/143 and Ser127, respectively [101]. Phosphoryl-
ation of the DNMT1 at Ser127 and/or Ser143 decreases
the capacity of the protein to interact with PCNA and
UHRF1 proteins and renders DNMT1 less efficient to
catalyze methylation [101] (Figure 3D). Interestingly,
phosphorylation of DNMT1 at Ser143 by AKT1 interferes
with the methylation of Lys142 by SET7, a known histone
methyltransferase involved in proteasome-mediated deg-
radation of DNMT1 [103].

The impact of viruses on the regulation of DNMT
genes
Several viruses have been reported to increase DNMTs
expression (Table 1). Epstein-Barr virus (EBV) is closely
associated with human malignancies, including nasopha-
ryngeal carcinoma, Burkitt's lymphoma, T-cell lymphoma,
gastric carcinoma [104,105]. Epigenetic regulation of EBV
plays a central role in viral latency and viral-associated
carcinogenesis [105]. EBV latent membrane protein 1
(LMP1) activates cellular DNMTs, resulting in hyperme-
thylation and silencing of E-cadherin. LMP1-mediated
DNMT1 activation involves JNK but not NF-κB and p38
mitogen-activated protein kinases [42]. The EBV onco-
gene product LMP1, induces promoter hypermethylation
of RARβ2 via up-regulation of DNMT1, DNMT3A, and
DNMT3B proteins, leading to decrease in RARβ2 expres-
sion in nasopharyngeal carcinoma cell lines [43]. Human
polyomavirus BKV large T antigen and adenovirus E1a
also strongly increase DNMT1 expression. Mutation of
the E2F sites within the DNMT1 promoter dramatically
abrogates transcriptional activation, suggesting that BKV
viral induction of DNMT1 may be through modulation of
pRB/E2F pathway [39].
The hepatitis B virus (HBV) X protein (HBx) plays a

key role in the molecular pathogenesis of HBV-related
hepatocellular carcinoma. HBx expression increases total
DNMT activities and selectively promotes regional hyper-
methylation of specific TSGs, including RASSF1A, GSTP1,
and CDKN2B, in pHBx-transfected cells [44]. Another
study shows that enforced HBx suppresses RASSF1A
possibly via induction of DNMT1 and DNMT3B ex-
pression [106].
Human immunodeficiency virus type 1 (HIV-1) also has

been reported to induce DNMT1 through the responsive
element residing in the −1634 to +71 of DNMT1 pro-
moter [45]. The increase in expression of DNMT1 and
overall genomic methylation as well as hypermethylation
of the p16INK4A gene are found when infected with HIV-1
in Hut 78 lymphoid cells [107]. HIV infection of human
regulatory T cells down-regulates FOXP3 expression me-
diated by increasing DNMT3B levels and DNA methyla-
tion in the FOXP3 gene [108]. Therefore, the ability of
increased DNMT activity to downregulate the expression
of critical genes may be one of the mechanisms for dys-
function of T cells in HIV-1-infected individuals.
Concluding remark
DNMTs are the enzymes which catalyze the CpG DNA
methylation and have been reported to be over-expressed
in various cancers. The mechanisms of DNMT over-
expression are worthy of investigation. The transcriptional
up-regulation on DNMT gene expression can be induced
by Ras-c-Jun signaling pathway, Sp1 and Sp3 zinc finger
proteins, wilms' tumour 1, homeobox B3 and various hu-
man viruses. Loss of transcriptional repression control on
DNMT genes has also been reported. For example, p53
transcriptionally suppresses DNMTs through binding with
Sp1 protein to the DNMT promoters. RB transcriptionally
suppresses DNMT1/3A through binding with E2F1 pro-
tein to the DNMT1 and 3A promoters. FOXO3a binds to
the FOXO3a DNA element of the DNMT3B promoter to
repress DNMT3B transcription. In addition, overexpressed
MDM2 may induce DNMT1, DNMT3A, and DNMT3B
expression by negative control over p53, RB and FOXO3a.
Low expressions of some miRs such as miR-29s, miR-143,
miR-148a and miR-152 are associated with DNMT
overexpression in various cancers. Several important
post-translational modification including acetylation
and phosphorylation have been reported to affect pro-
tein stability and activity of the DNMTs especially
DNMT1. Therefore, drugs targeting DNMT protein in-
activation and depletion, such as MDM2, AKT and
CDKs inhibitors may prove to be a good therapeutic
strategy for cancer treatment. Combined treatment with
the known DNMT inhibitors such as decitabine could
be a potential therapeutic strategy through epigenetic
modulation warranting further investigation in cancer
treatment.
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