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Abstract

Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen
human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to
expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n
instability increases with repeat number, and implicate both DNA replication and DNA damage response
mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the
expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on
(CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain
the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for
prognosis and treatment.

Introduction
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR)
sequences at distinct chromosomal loci is the mutation
common to multiple neurological diseases including myo-
tonic dystrophy type 1 (DM1), Huntington disease (HD),
Huntington disease-like 2 (HDL2), dentatorubral-pallido-
luysian atrophy (DRPLA), spinal and bulbar muscular
atrophy (SBMA), and several forms of spinocerebellar
ataxia (SCA). The polyglutamine diseases HD, DRPLA,
SBMA, and SCA1, 3, 6, 7, 17 result from increases of
(CAG)n repeats in the coding (nontemplate) strand for
mRNA synthesis of the cognate genes ((CAG)n in RNA)
to produce mutant polyglutamine proteins with toxic
gain-of-function [1]. In contrast, (CTG)n•(CAG)n expan-
sion at the DMPK 3’ UTR alters the chromatin structure
of the region, downregulates transcription of the locus
and, as at the JPH3 gene produce poly-(CUG) pre-mRNAs
respectively in DM1 and HDL2 patients that sequester the
MBNL (CUG) binding proteins, leading to trans-dominant
interference with the normal splicing of multiple RNAs.
Finally, bidirectional transcription at the SCA8 locus can
result in expression of both a polyglutamine protein and a
(CUG)n expansion transcript, which may represent a toxic
gain-of-function at both the protein and RNA levels.

Trinucleotide repeat expansion requires DNA synthesis,
either during DNA replication or repair. The effects of
replication origin proximity, replication polarity, and repli-
cation inhibition support replication-based models of TNR
instability in mitotic cells [2-9]. Hairpin formation by
DNA polymerase slippage is a likely mechanism for
changes in TNR repeat length [10-12]. Hairpin structure
formation by DNA polymerase slippage at (CTG)n•(CAG)

n sequences has been well documented in vitro [13,14]
and can result in either insertion or deletion mutations.
However, hairpins have also been postulated to arise dur-
ing replication fork reversal and postreplication repair
[2,15,16], Okazaki fragment maturation [17-19], base exci-
sion repair [20], nucleotide excision repair [21-26] or
repair of structures induced by R-loop formation during
transcription [25,27]. Current models of (CTG)n•(CAG)n
instability during replication or repair envision that hairpin
formation on the newly synthesized DNA strand leads to
TNR expansion if the hairpin is sufficiently long-lived to
serve as template in a subsequent round of replication.
Conversely, stable hairpin formation in the leading or lag-
ging template strand would lead to contraction of the
repeat in the next round of replication (Figure 1).
The salient observation that TNR instability in

humans and mice can occur in postmitotic cells argues
that repair mechanisms, instead of replication origin-
dependent mitotic DNA replication, are involved in
TNR instability in these tissues [2,5,28-30]. In this vein,
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it has been proposed that the process of transcription
stimulates TNR instability due to the formation of hair-
pin or other non-B DNA structures in the single
stranded nontemplate DNA, or in the template strand
upon RNA displacement. These structures may be tar-
gets for DNA repair processes such as transcription-
coupled repair, nucleotide excision repair, mismatch
repair, or double-stranded DNA break repair [24,27,31].
Following extensive linkage analysis in myotonic dys-

trophy families [32-34], in 1992 several laboratories
reported that expansion of the (CTG)n•(CAG)n repeat
region in the 3’ untranslated region of the dystrophia
myotonica protein kinase gene was highly correlated
with the occurrence of congenital DM [35-37]. Strong
correlations also exist between (CTG)n•(CAG)n repeat
length and the occurrence of Huntington disease
[38,39], although second site modifier genes and epige-
netic mechanisms play a significant role in the appear-
ance of HD symptoms. In general, unaffected individuals
display fewer than 30 (CTG)n•(CAG)n repeats at the
DM1 or HD locus. Trinucleotide repeat (TNR) tracts in

the range of 30-40 repeats are termed premutation
alleles (DM1) or intermediate alleles of incomplete
penetrance (HD), while TNRs of 42 or more repeats
have been associated with complete penetrance of HD
[40] and increased expansion frequency during interge-
nerational transfer or somatic development in DM1
families [2]. The phenomenon of ‘genetic anticipation’ is
a hallmark of the (CTG)n•(CAG)n TNR instability disor-
ders, in which an increase in the number of microsatel-
lite repeats is correlated with an earlier age of onset and
heightened severity of the disease in successive genera-
tions. Genetic anticipation reflects the bias towards
expansion over contraction of long (CTG)n•(CAG)n
tracts, and may be explained by the greater tendency of
extended repeats to adopt non-B form DNA structures
prone to progressive expansion.
(CTG)n•(CAG)n expansion can have pathological

effects on local chromatin structure and gene expres-
sion, as well as dominant negative effects on RNA meta-
bolism and protein function [41-44]. This review will
focus primarily on the structure and instability of (CTG)

Figure 1 Hairpin-induced trinucleotide repeat instability. The TNR is indicated by gray lines, flanking DNA by black lines. (a) Nascent-strand
hairpin formation results in over-replication of a segment of the TNR in one chromatid. A second round of replication of the hairpin strand fixes
the expanded allele in the genome. (b) Template-strand hairpin formation results in under-replication of a segment of the TNR in one
chromatid. A second round of replication of the nonhairpin strand fixes the contracted allele in the genome. (Reprinted from [7] with
permission)
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n•(CAG)n trinucleotide repeat sequences in eucaryotic
cells. For further background on the metabolism of
(CTG)n•(CAG)n sequences in bacterial cells, the reader
is referred to several excellent research articles and
reviews [5,6,45-51].

(CTG)n•(CAG)n hairpins in vitro
NMR, melting and chemical modification analyses con-
firm that both (CTG)n and (CAG)n oligonucleotides as
short as 6-10 repeats can form stable hairpin structures
with mismatched base pairs [21,52-55]. Although short
(CTG)n or (CAG)n hairpins represent stable structures,
they rapidly convert to duplex DNA in the presence of
the complementary oligonucleotide through loop-loop
and stem-stem interactions without prior denaturation
[52]. Considered with the greater thermodynamic stabi-
lity of duplex vs. cruciform DNA, and the inhibition of
cruciform formation by single base mismatches [56,57],
these observations suggest that unless otherwise stabi-
lized e.g. by protein binding or high negative superheli-
city [2,58], apposed hairpin structures formed in vivo by
transcription or replication fork regression to “chicken
foot” structures would resolve to duplex DNA, and disfa-
vor TNR expansions. Notably, (CTG)25 or (CAG)25 hair-
pins form duplex DNA approximately 5-fold more slowly
than (CTG)10 or (CAG)10 hairpins in the presence of
their complementary strands, despite similar thermal sta-
bilities of the hairpins [55]. Thus, longer hairpins may
also have longer half-lives in vivo.
Compared to nonrepetitive palindromic sequences,

which would require half of the palindrome to become
single stranded prior to hairpin formation, the free
energy required to nucleate short hairpin formation may
be provided by negative superhelicity [2,58]. The greater
number of hairpin configurations in a repetitive TNR
would be expected to increase the entropy of hairpin for-
mation and decrease the free energy. Thus, in addition to
the slower dissolution of longer hairpins by their comple-
mentary sequences, hairpin formation may occur more
rapidly in longer repeats, competing against SSB binding.
To assess the mechanism of hairpin instability, Pani-

grahi et al. used in vitro replication of (CTG)79•(CAG)79
repeats driven by the SV40 T antigen (T-ag) helicase.
The remaining enzymatic machinery of DNA synthesis
is endogenous to the host cell. Plasmids in which the
(CAG)n sequence was the lagging strand template
showed an expansion bias, while plasmids containing
the opposite TNR replication orientation ((CTG)n in the
lagging strand template) displayed a preference for con-
traction [59]. To the extent that the replication fork dri-
ven by the strong T-ag helicase mimics the activity and
interactions of the cellular Cdc45/MCM2-7/GINS repli-
cative helicase [60,61] with replication fork stabilizing
proteins, the effect of TNR orientation relative to the

replication origin on (CTG)n•(CAG)n stability imply that
unstable TNR structures can be processed to expansions
or contractions depending on DNA replication polarity.
The question of why a contraction bias is observed in

rapidly dividing eucaryotic cells [16] was addressed by
Delagoutte et al. using a primer extension model of
(CTG)n•(CAG)n replication, in which replication by T4
DNA polymerase through short (CAG)n or (CTG)n
TNRs was inhibited relative to polymerization through
non-structure forming repeats. (CAG)n repeats blocked
replication more efficiently than (CTG)n repeats, and
this difference was eliminated by the addition of E. coli
or T4 single strand binding SSB proteins [62]. Based on
the preferential binding of SSB to lagging strand tem-
plate DNA and the more efficient blockage of polymeri-
zation by the (CAG)n vs. (CTG)n template, the authors
proposed a ‘template-push’ model in which the contrac-
tion bias of TNRs with (CTG)n in the lagging strand
template is not the result of lagging strand structure for-
mation while single stranded, but is the result of extru-
sion of the leading strand (CAG)n template and
replication across the abasic bottom of the hairpin in
order to maintain contact between DNA polymerase
and replicative helicase [62]. Alternatively, transient
release of the leading strand hairpin template from the
stalled polymerase could allow hairpin slippage or
migration in the 5’ – > 3’ direction away from the repli-
cation fork [13,63,64], and reestablishment of a func-
tional primer-template junction.
Annealing of single stranded plasmid DNA to comple-

mentary strands containing excess (CTG)n or (CAG)n
sequences, which formed hairpins as large as 25 repeats,
yielded products that showed accurate repair in human
cell extracts [56,65-68]. The requirement for PCNA, and
the nick-dependence of accurate repair suggested that
mismatch repair proteins (MMR) that function during
replication in vivo might play a role in hairpin resolu-
tion in vitro. Indeed, in one study, the repair of short
(CTG)1-3 slip out structures was reported to increase
with increasing concentrations of MutSb (Msh2/Msh3)
in cell extracts [69]. Nevertheless, in contrast to the
apparent requirement for MMR proteins for (CTG)n•
(CAG)n expansions in transgenic mice [70-72], MMR
proteins, or the nucleotide excision repair (NER) protein
XPG, were not essential for repair of longer (CTG)20-25
hairpins in cell extracts [66,67,69]. It remains possible
that there are alternative pathways for hairpin removal.
Additionally, the formation of stable hairpins in advance
in these assays may have bypassed the contribution of
MMR, NER or other pathways to hairpin repair.

Yeast models of (CTG)n•(CAG)n instability
Numerous genetic analyses have been performed in S.
cerevisiae to characterize the effect of (CTG)n•(CAG)n
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sequences on DNA replication and chromosome fragi-
lity, and to identify proteins that affect (CTG)n•(CAG)n
trinucleotide repeat stability. Between these studies
there are some disparities that are likely due to differ-
ences in the repeat sequence ((CTG)n•(CAG)n, (GAA)n•
(TTC)n, (CGG)n•(CCG)n), its environment (plasmid vs.
chromosome; leading vs. lagging strand replication
polarity), number of repeats in the microsatellite tract,
genetic background, and the sensitivity of the assay to
small changes in repeat length [73-82]. Thus the fre-
quency of expansions was approximately 500-fold
greater when (CTG)25 was in the lagging strand tem-
plate than when (CAG)25 was in the lagging strand tem-
plate [17]. While the frequencies of (CTG)25 or (CAG)25
expansions, and (CTG) 50 or (CAG)50 contractions, were
unaffected in msh2 mutants [17,83], (CTG)13 expansion
was stimulated by mutation of postreplication repair
genes rad18 (hRAD18, binding partner of hUBE2A/B),
rad5 (hSMARCA3), and PRR-specific alleles of pol30
(hPCNA) [74].
When analyzed by two-dimensional gel electrophoresis

(CTG)80•(CAG)80 sequences showed only modest effects
on replication fork progress, irrespective of replication
polarity. In contrast, (CGG)40•(CCG)40 repeats imposed
strong blocks to fork progression [75]. Surprisingly, in
an assay that used reversion to 5-fluoroorotic acid resis-
tance (FOAR) to quantitate TNR expansions, compar-
able rates of repeat instability were found for (CGG)25
or (CTG)25 (lagging strand template) TNRs. In the pre-
sence of the rfc1-1 mutation, which blocks PCNA load-
ing and lagging strand Okazaki fragment synthesis, the
expansion rates of (CGG)25 and (CTG)25 increased ~40-
50 fold and ~2-3 fold respectively. One interpretation of
this result is that inhibition of lagging strand synthesis
can promote expansions in the leading strand nascent
DNA. However, since (CGG)n and (CTG)n repeats in
the lagging strand template characteristically show a
strong bias towards contraction, this assay may not have
revealed the full relationship between replication stalling
and TNR instability. In a similar assay, expansion of
(CAG)25•(CTG)25 was increased ~100 fold when (CAG)
was in the lagging vs. leading strand template, and a
ra27Δ mutant in the Okazaki flap endonuclease (hFEN-1)
enhanced (CTG)n•(CAG) n expansion an additional 100
fold, irrespective of replication orientation [84].
Bhattacharya and Lahue [85] reported that (CTG)13

(lagging strand template) expansion was markedly (~40
fold) increased in srs2 helicase mutants, while (CTG)25
expansion was increased ~5 fold in the same cells, and
these rates were minimally affected by mutation of the
RecQ helicase sgs1 or either of the homologous recombi-
nation proteins rad51 or rad52, arguing against unequal
sister chromatid exchange as a mechanism of expansion,
consistent with the absence of exchange of markers

flanking expanded alleles in human patients [86,87].
These results differed from those of Kerrest et al. who
reported that the fragility of yeast artificial chromosomes
(YACs) containing longer (CTG)70•(CAG)70 TNRs,
which are above the expansion threshold, increased sig-
nificantly in sgs1Δ or srs2Δ helicase mutants. Deletion of
the homologous recombination protein genes mitigated
the effect of the srs2Δ mutation in either orientation, and
decreased the effect of the sgs1Δ mutation in the (CTG)

70 orientation, but exacerbated the effect of the sgs1Δ
mutation in the (CAG)70 orientation [15]. A simple rela-
tionship between YAC fragility, TNR length and replica-
tion polarity was difficult to ascertain for these mutants,
leading the authors to suggest that multiple pathways
coexist that involve Srs2, Sgs1, Rad51 and Rad52 in the
repair of replication fork damage due to hairpin forming
sequences of different lengths and orientations.
In a screen for mutants that affected (CTG)n•(CAG)n

instability, disruption of the replication fork stabilization
complex protein genes Mrc1, Tof1 or Csm3 selectively
enhanced contractions of a (CAG)20-URA3 (lagging
strand template) reporter, independent of replication
checkpoint and DNA damage checkpoint factors [76],
and control experiments demonstrated that mutation of
the same fork stabilization complex proteins did not
affect the stability of a non-structure forming (CTA)n
repeat. In contrast, mutation of the fork stabilization
complex proteins or the DNA damage checkpoint pro-
teins Ddc1, Rad9, Rad17, Mec1, Ddc2, Rad24, Mec3,
Rad53 or Chk1 led to increased expansion of a (CAG)13-
URA3 reporter. These results suggest that Mrc1, Tof1
and Csm3 may maintain TNR length through coupling of
the DNA polymerase and replicative helicase to prevent
the formation of hairpins, whereas the DNA damage
checkpoint is involved in stabilization of the replisome
after the formation of hairpin structures.
Assays using longer TNRs (85-155 repeats) in mrc1,

rad9, mec1, ddc2, rad17, rad24, chk1, or rad53 mutant
strains found elevated chromosome breakage due to
expanded (CAG)n•(CTG)n tracts and increased instability
(primarily contractions) of a (CAG)n (lagging strand tem-
plate) reporter [77,78]. The inherently greater instability
of long (CTG)n•(CAG)n repeats in wild type strains may
have masked the effects of some checkpoint mutants,
nevertheless, these studies indicate that distinct protein
complexes respond to forms of DNA replicative stress
that differ in size or geometry, and underscore the corre-
lation between noncanonical (CTG)n•(CAG)n structures,
checkpoint activation and chromosome breakage [88,89].
Indeed, Sundararajan et al. have recently shown that long
(CTG)n•(CAG)n tracts induce chromosomal double
strand breaks in yeast, and that the Mre11/Rad50/Xrs2
complex is necessary for blocking chromosome fragility
and inhibiting (CAG)70 TNR instability (expansion and
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contraction) by both homologous recombination and
NHEJ pathways [90].
The homologous recombination protein Rad52 was

also required to protect the (CAG)70-URA3 reporter
from length instability and chromosome breakage in the
presence of mutations in the alternative clamp loader
Ctf18-Dcc1-Ctf8-RFC (Ctf18-RFC) [91]. Previously
thought to promote PCNA loading and unloading dur-
ing replication fork navigation through sister chromatid
cohesion (SCC) complexes [92,93], Gellon et al. showed
that Ctf18-RFC is required for TNR stability indepen-
dent of its role in SCC, in parallel to a pathway invol-
ving the Mrc1 protein which couples the leading strand
polymerase ε and the replicative helicase at the replica-
tion fork, and acts in signaling during the intra-S phase
checkpoint and the DNA damage response [94-96]. On
the replication fork lagging strand, Ctf4 collaborates
with MCM10 to link DNA polymerase a to the MCM2-
7 helicase [97-99]. Like the mrc1 mutant, a ctf4 deletion
mutant is associated with chromosomal instability, ctf4
rad52 double mutants grow poorly and produce a high
percentage of inviable cells [100], and ctf4 mrc1 mutants
are inviable [101].
Taken together these studies in yeast suggest a cellular

fail-safe strategy of overlapping pathways to (i) prevent
the formation of stable hairpin structures by maintaining
the rate of replisome movement and coupling of leading
and lagging strand polymerases to the replicative heli-
case, (ii) restore hairpin structures to duplex DNA by
repair helicases, and (iii) recruit postreplication repair
machinery to excise hairpins.

Mouse models of (CTG)n•(CAG)n instability
Murine models of several trinucleotide expansion diseases
including Huntington disease, myotonic dystrophy type 1,
Fragile X syndrome, and Friedrich’s ataxia have been gen-
erated by random integration of pathological length repeat
tracts or knock-in at homologous genetic sites, and have
reproduced many, though not all, phenotypes of the asso-
ciated disease. These models typically show tissue-specific,
expansion-biased patterns of instability similar to those in
humans, including expansions in germ cells, early embryos
and adults. Although intergenerational (CTG)n•(CAG)n
expansion is typically smaller in transgenic mice than
humans [16,102], some recent studies have reported rela-
tively large expansions during parent-to-offspring trans-
mission [103,104]. Among the cis-acting modulators of
TNR instability in murine systems are the sequence and
length of the TNR [105], the presence of human flanking
DNA [27,106-108], the chromosomal integration site
[109,110], chromatin structure [41,43,111-115], and repli-
cation polarity [4].
Relevant to studies of the relationship between the

DNA replication and (CTG)n•(CAG)n stability is a

comparison of origin activity at the DMPK locus in
human cells and transgenic mice [4]. In this work, two
origins were mapped upstream and downstream of the
DMPK (CTG)n•(CAG)n repeat in both control and DM1
human fibroblasts. Transgenic mice bearing a single
copy of a ~45-kb genomic region of the expanded DM1
locus containing (CTG) > 300•(CAG) > 300 repeats
showed high levels of intergenerational and somatic
repeat instability [116]. The transcriptional activity of
the DM1 locus and tissue-specific patterns of instability
were similar to those of DM1 individuals. Unlike in
humans, however, when origin activity (abundance of
nascent DNA) was quantitated over the ~45-kb human
DM1 transgene from pancreatic cells of mice bearing
either > 300 (DM328) or 20 (DM20) [117] repeats,
neither the upstream nor the downstream origin was
active in DM20 mice, and only the upstream origin was
inactive in DM328 mice, [4]., Thus, the nuclear environ-
ment of the transgene may also modulate its replication
origin activity and downstream effects on TNR stability.
Conversely, pathological length (CTG)n•(CAG)n trans-

genes could induce local heterochromatinization and
position effect variegation (PEV) upon integration. With
overexpression of the heterochromatin organizing pro-
tein HP1b, PEV increased only in transgenes containing
the TNRs [43]. These data suggest that the integration
site and the transgene may each effect biological pres-
sure for or against integration of a DNA fragment at a
particular genomic site. While the influences of chromo-
some environment are manifold, cis-effects of the inte-
gration site on TNR instability are generally diminished
with increasing length of the microsatellite repeat tract
and the human flanking DNA [27,107].
Transcription is a possible cis-acting modifier that could

lead to tissue-specific TNR instability, although the consti-
tutive expression of the associated disease genes in
humans argues against this model, and no correlation was
observed between instability and stable mRNA levels in
DM1 [118], HD [119] or SCA7 (CTG)92•(CAG)92) trans-
genic mice [115]. Nevertheless, secondary attributes of
transcription, e.g. DNA supercoiling, histone modification,
DNA repair induced by the formation of RNA-DNA
hybrid loops [25,120,121] may indirectly account for the
activation of ATR or ATM pathways [122-124], and tran-
scription induced (CTG)n•(CAG)n contraction has been
reported in non-murine systems [26,125-129].
Specific trans-acting factors that have been implicated in

(CTG)n•(CAG)n instability based on crosses between trans-
genic TNR mice and mice defective in DNA mismatch
repair or base excision repair [20,71,72,102,130,131]. In
bacteria, MMR relies primarily on three protein complexes
MutS, MutL and MutH [132]. The MutS dimer recognizes
the mismatch and enlists a MutL dimer that then recruits
the MutH endonuclease to initiate nick-directed repair.
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In eukaryotes there are at least six homologs to the MutS
and MutL proteins [133,134]. The major MutS homologue
is MSH2, which can heterodimerize with either MSH6 to
form MutSa which binds to single base mismatches, or
with MSH3 to form MutSb that recognizes short insertion/
deletion loops. The PMS2/MLH1 (MutLa) heterodimer
interacts with mismatches recognized by MutSa or MutSb
to trigger downstream excision and resynthesis reactions.
The murine mismatch repair genes MSH2 and MSH3

are essential for germinal and somatic expansion, and
PMS2 is required for somatic instability, of long (> 84
repeat) (CTG)n•(CAG)n TNRs in transgenic mice
[16,70-72,102,116,130,131,135,136]. In vitro, MutSb
binding to (CAG)n hairpins nominally reduced its
ATPase activity, suggesting that MutSb might mask
hairpin structures from repair [137,138]. However, a
later study reported that the ATPase activity of MutSb
bound to (CAG)n hairpins was similar to that of the
enzyme bound to nonhairpin duplex DNA, and that
(CAG)n hairpin binding of MutSb did not change its
catalytic efficiency (kcat/Km) [139]. Thus, the precise
mechanism by which the MMR system is involved in
TNR instability in vivo remains unresolved.
When transgenic mice carrying the HD (CAG)n repeat

were crossed with mice lacking the base excision repair
(BER) glycosylase OGG1 (7,8-dihydro-8-oxoguanine
DNA glycosylase), which is responsible for the removal
of 7,8-dihydro-8-oxoguanine (8-oxoG) (the most com-
mon oxidized base in DNA), age-dependent somatic
expansion was largely suppressed [20]. In an in vitro
model of base excision repair, incision of 8-oxo-G within
a (CAG)n tract by APE1 and extension by the major BER
polymerase, polb, resulted in expansion of the repeat
tract [20,140], leading to the hypothesis of a toxic oxida-
tion cycle in which hairpin loops form during long-patch
repair of bases damaged by reactive oxygen species. The
hairpin may be protected from the endonuclease activity
of FEN1 by MutSb [141], or FEN1 may promote the liga-
tion of hairpin-containing flaps [140]. Repeated cycles of
oxidation, repair and expansion would promote progres-
sive age-dependent expansion. The presence of additional
glycosylases that can act on 8-oxo-G (and other oxidized
bases) implies a unique function for OGG1 in (CAG)n
expansion during BER, which is not yet understood
[142]. Similar experiments in which DM328 mice ((CTG)
> 300•(CAG) > 300 repeats) were crossed with mice defi-
cient in Rad52, Rad54 or DNA-PKcs showed little effect
on TNR stability, arguing that homologous recombina-
tion or nonhomologous end joining are not involved in
expansion or contraction [135].
A difference between yeast and murine systems is the

reported absence of an effect of Fen1 loss on TNR
instability in DM1 knock-in transgenic mice [143]. Fen1
knockdown (80-90%) did not affect the stability of the

HD (CAG)27•(CTG)27 repeats in human cells, but Fen1
haploinsufficiency did induce expansion of transgenic
(CAG)120•(CTG)120 repeats [144]. Constitutively low
levels of Fen1 have also been implicated in inducing
(CAG)n•(CTG)n instability in the striatum vs. cerebel-
lum of HD mice [145].
The similarity of tissue-specific patterns of somatic

mosaicism in multiple mouse models also suggest the
influence of additional tissue-specific factors affecting
TNR stability [104,110,118,119,146]. Further, it has been
proposed that sex-specific trans-acting factors are respon-
sible for differences in intergenerational instability
between murine and human systems [103]. A recent geno-
mic study compared the phenotype of tissue-specific pat-
terns of (CAG)n•(CTG)n instability of HdhQ111 (HD
homolog) transgenic mice with microarray analysis of
gene expression [147]. The collective expression signature
of a group of 150 genes was highly correlated with tissue
instability, although no single gene expression pattern was
absolutely predictive of instability. Instability indices were
highest in nondividing striatum (highly affected in HD)
and liver cells, and lowest in testis and umbilical cord.
Comparison of HdhQ111/111 and Hdh+/+ littermates
showed that the instability of normal or mutant striata
was significantly higher than the instability index of cere-
bellum. The authors concluded that mutant and wild type
striata have similar tendencies towards TNR expansion,
but the HD (CAG)n•(CTG) n microsatellite does not
expand in normal striatum because it is not of sufficient
length to be susceptible to additional processes involved in
expansion. Possibly, transient or short-lived fluctuations in
protein function or DNA structure occur frequently in
specific tissues to increase the susceptibility of long TNRs
to expansion.
In contrast to previous reports that MMR and BER

proteins contribute to (CTG)n•(CAG)n expansion in
mice, expression levels of DNA repair genes including
MSH2, MSH3, and OGG1 did not correlate with the tis-
sue specificity of somatic instability [147]. To address
the caveat that steady state RNA levels may not reflect
changes in protein abundance, the authors confirmed by
immunoblot that Cbp and MSH2 protein protein levels
were indistinguishable in Hdh+/+ and HdhQ111/+ mice.
However, further inspection of the data revealed that 63
of 74 genes whose downregulation showed weak-to-
medium range Pearson coefficient correlation to TNR
instability are involved in DNA metabolism. The authors
concluded that pathways including cell cycle, metabo-
lism and neurotransmission act in combination to gen-
erate tissue-specific patterns of instability, and that
multiple tissue factors reflect the level of somatic
instability in different tissues. Components of any of
these pathways may represent second site genetic modi-
fiers that contribute to the tissue- and cell type-specific
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variation of (CTG)n•(CAG)n TNR instability observed in
mice and humans.

Human models of (CTG)n•(CAG)n instability
During human and mouse development, DM1 tracts tend
to expand in premeiotic spermatogonia, and large alleles
subsequently contract during later stages of spermatogen-
esis and early in male development. In females, large
expansions can be observed in nondividing oocytes, and
full mutations are inherited almost exclusively from the
mother. Thus, it has been proposed that two mechanisms
of instability apply to (CTG)n•(CAG)n repeats: as in
oocytes, expansions occur by DNA repair, while contrac-
tions characteristic of male development are the result of
DNA replication [142]. In both male and female DM1
patients (and transgenic mouse models), (CTG)n•(CAG)n
TNR tracts also show a significant level of somatic
instability that increases with age in a tissue-specific man-
ner. In possible support of a dual mechanism model for
expansions and contractions, DM328 transgenic mice
made deficient in DNA ligase I displayed reduced (CTG)n•
(CAG)n instability upon maternal transmission, but
showed no effect on paternal transmission or somatic
instability [148]. Although studies such as these are valu-
able in identifying candidate genes affecting (CTG)n•
(CAG)n instability, non-human model systems arguably do
not recapitulate all aspects of microsatellite expansion dis-
ease in human cells due to differences in chromatin struc-
ture, cell division and DNA replication rates, and cell type.
Hence, several investigators have turned to analyses of
patient-derived cells, human embryonic stem (hES) cells
[149-151], and other human cell model systems [7].
Recent PCR and immunoblot studies reported that

MMR (MSH2, MSH3, MSH6) gene expression and pro-
tein levels of VUB03_DM1 and VUB19_DM1 hES cells
were as high as in MMR proficient HeLa cells and stable
during culture in the undifferentiated state, when (CTG)n•
(CAG)n repeat length increased significantly [151,152].
Following differentiation to osteoblast progenitor-like
cells, sharp decreases in MSH2, MSH3 and MSH6 levels
were correlated with stabilization of (CTG)n•(CAG)n
repeat lengths of the VUB03_DM1 and VUB19_DM1 hES
cells [152]. These results imply that either the reduction in
MMR protein expression, the decrease in cell proliferation
during hES cell differentiation, or other trans-acting fac-
tors, may be related to (CTG)n•(CAG)n TNR stabilization.
In a human fibrosarcoma model that scores contrac-

tion of an intronic (CTG)95•(CAG)95 repeat by cell sur-
vival under HPRT+ selection (HAT medium), ~25-fold
induction of transcription of randomly integrated HPRT
cassettes increased contraction ~15-fold, to roughly
0.001% of cells. Transcription-induced contraction fre-
quencies accumulated at the same rate in proliferating
and confluent cells that differed by 10-fold in rates of

cell division. siRNA knockdown of proteins involved in
mismatch repair (MSH2, MSH3), and transcription-
coupled nucleotide excision repair (CSB, ERCC1, XPA,
XPG, TFIIS, BRCA1, BARD1) decreased the frequency
of contractions 2- to 3-fold [25,26,126,153], indicating
that these pathways likely play a role in TNR expansion
in postmitotic cells. Supporting a role for BER in
somatic alteration of (CAG)n•(CTG)n repeat length, tis-
sue-specific decreases of (CAG)n•(CTG)n instability in
the striatum, cerebral cortex and hippocampus of Xpa-/-

SCA1 mice have recently been reported [154]. Neverthe-
less, a parsimonious mechanism for transcription-
induced instability that addresses both supporting and
conflicting evidence is not yet available [25].
The effect of DNA replication on the stability of (CTG)

n•(CAG)n sequences has been studied in SV40 origin plas-
mids replicating in COS-1 cells [155] or T-ag supplemen-
ted HeLa cell extracts [59]. While these systems do not
duplicate the chromatin structure of genomic DNA, and
replication does not utilize components of the ORC-
dependent replisome that interact with the cellular DNA
damage signaling and repair machinery, (CTG)n•(CAG)n
instability in these plasmids was sensitive to TNR length,
leading/lagging strand replication polarity, and distance to
the viral replication origin. Hence, strong evidence sup-
ports both replication-dependent and replication-indepen-
dent mechanisms of (CTG)n•(CAG)n instability.
A pharmacological approach to reducing the length of

(CTG)n•(CAG)n TNRs was used by Hashem et al. in lym-
phoblast cell lines derived from DM1 patients (CTG)~770•
(CAG)~770 repeats) [156]. Short term treatment with sev-
eral DNA damaging drugs (ethylmethanesulfonate, mito-
mycin C, mitoxantrone, doxorubicin) led to the
accumulation of smaller (CTG)n•(CAG)n repeat alleles in
the cell population, often to fewer than 100 repeats. The
rate of shift in the population profile indicated that the
effects of the drugs were on the TNRs directly, rather than
through mitotic selection. This result is significant given
the tendency of the DM1 (CTG)n•(CAG)n repeats to
expand rather than contract in patients and in culture. A
similar study by Yang et al. showed that the replication
inhibitors aphidicolin (which inhibits both leading and lag-
ging strand DNA polymerases [157]) and emetine (which
selectively blocks lagging strand Okazaki fragment synth-
esis [158]), but not mimosine (which induces DNA double
strand breaks and arrests cells in late G1 phase [159,160]),
increased the rate of (CTG)n expansion in DM fibroblast
cells. In these experiments only the expanded DM1 allele
((CTG)~220•(CAG)~220) was altered, leaving the normal
allele, (CTG)12•(CAG)12 unaffected. Aphidicolin and eme-
tine enhanced the magnitude of short expansions in
almost 100% of cells approximately three-fold, while up to
25% of cells gained more than 120 repeats. Likewise, in
kidney cells from Dmt-D transgenic mice carrying (CTG)
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160•(CAG)160 repeats, Gomes-Pereira and Monckton [161]
showed that prolonged exposure to the nucleoside analog
and chain elongation inhibitor cytosine arabinoside, the
intercalating mutagen ethidium bromide, the DNA methy-
lation inhibitor 5-azacytidine, and aspirin, reduced the rate
of repeat expansion, while exposure to caffeine, which
uncouples DNA replication and repair from cell cycle
checkpoints, increased the rate of expansion.
An alternative approach to the study of (CTG)n•(CAG)n

instability was taken by Liu et al., who constructed a clonal
HeLa cell line containing a single FLP recombinase target
site into which (CTG)n•(CAG)n repeats of various lengths
were integrated alongside the human c-myc replication
origin in either replication orientation at the same ectopic
chromosomal site [7]. In these HeLa/c-myc:(CTG)n•
(CAG)n cell lines, the (CTG)n•(CAG)n tracts displayed
time-, replication polarity-, and repeat length-dependence
of instability. Moreover, treatment of these cells with eme-
tine, FEN1 siRNA or low dose aphidicolin rapidly (< 10
population doublings) and efficiently induced instability of
the premutation length (CTG)45•(CAG) 45 and disease-
related (CTG)102•(CAG)102 TNRs, but not normal length
(CTG)12•(CAG)12 TNRs. For all three treatments (low
dose aphidicolin, emetine, siRNA) there was a bias
towards contraction when (CTG)102 was in the lagging
strand template, and towards expansion when (CAG)102
was in the lagging strand template. The presence of
(CAG)n in the lagging strand template is the same replica-
tion polarity that has generated (CTG)n•(CAG)n expan-
sions in all other model systems [5,162]. Additional RNAi
experiments using these cells (GL, ML, submitted) have
confirmed the results of yeast studies in which mutation
of Tof1 (human Timeless), Csm3 (human Tipin), or Mrc1
(human Claspin) dramatically increased similar patterns of
(CTG)n•(CAG)n instability.
In general, the treatment of cultured human or trans-

genic mouse cells with DNA damaging drugs or replica-
tion inhibitors demonstrates that environmental agents
can modulate (CTG)n•(CAG)n microsatellite instability,
and that agents that cause acute DNA damage or repair
are at least three orders of magnitude more efficient at
inducing TNR instability than transcription-induced desta-
bilization [153], although a unifying mechanism for
explaining the observed changes has not emerged.
Towards clarifying the relationship between replication

and expansion of the DMPK (CTG)n•(CAG)n TNR, Cleary
et al. analyzed origin activity across the DMPK locus in
age-, tissue- and sex-matched human control and DM1
fibroblasts [4]. These experiments revealed two replication
origins, upstream and downstream of the DMPK (CTG)n•
(CAG)n repeats in both control and DM1 cells. Our
laboratory has independently confirmed the presence of
origins upstream and downstream of the DMPK (CTG)n•
(CAG)n repeats in matched DM1 and non-DM1 cells. The

upstream origin coincides with that found by Cleary et al.,
while the downstream origin is approximately 2 kb closer
to the TNR (GL, ML, submitted). Cleary et al. also
mapped the activity of these origins in transgenic mice
containing the ~45 kb DMPK locus from control (DM20,
(CTG)~20•(CAG)~20) or DM1 (DM328, (CTG) > 300•
(CAG) > 300) and found that only the origin downstream
of the expanded (CTG) > 300•(CAG) > 300 TNR was active.
It is thus possible that the downstream origin (which posi-
tions (CAG)n in the lagging strand template) is responsible
for replication and expansion of the TNR in the transgenic
DM328 cells. However, extension of this interpretation to
human cells or other chromosomal environments is
clouded by the observations that, in contrast to the trans-
genes, both upstream and downstream origins were
equally active in human control and DM1 fibroblasts,
while integration of the nonexpanded control (DM20)
DMPK locus resulted in inactivation of both upstream and
downstream origins in the transgenic mice.
As discussed above, (CTG)n•(CAG)n instability is

believed to result from the formation of hairpins in tem-
plate strand DNA leading to contractions, or in newly
synthesized DNA leading to expansions. Nevertheless,
direct proof of hairpin formation in vivo has been lacking.
To test for the presence of hairpins in vivo, synthetic zinc
finger proteins (ZFPs) were engineered that specifically
recognize either the (CTG)n strand or (CAG)n strand of
the DMPK TNR, and fused to the Fok1 nuclease catalytic
domain. The resulting zinc finger nucleases (ZFNs) dimer-
ize only after zinc finger binding to their respective DNA
substrate, which activates the nuclease catalytic domains.
As diagrammed in Figure 2, heterodimerization of
ZFNCTG and ZFNCAG is required to cleave Watson-Crick
duplex DNA. However, hairpin DNA presents the same
sequence ((CTG)n or (CAG)n) on both legs of the stem,
and can be cleaved by a ZFNCTG or ZFNCAG homodimer,
respectively. Expression of the ZFNs in the HeLa/c-myc:
(CTG)n•(CAG)n cell lines followed by PCR across the
ectopic (CTG)n•(CAG)n TNRs demonstrated directly that
hairpins form in vivo on both leading strand and lagging
strand templates. Moreover, ZFN cleavage was inhibited
in serum-deprived nondividing cells, implying that hairpin
formation in this system is replication-dependent [7].

Conclusions
(CTG)n and (CAG)n trinucleotide repeat sequences can
form stable hairpins in vitro and in vivo, however, there
is a facile transition of (CTG)n or (CAG)n hairpins to
duplex in the presence of their complementary
sequences in vitro. This suggests that other factors pro-
long the lifetime of (CTG)n and (CAG)n hairpins in
vivo, among which may be MMR complexes, negative
supercoiling behind replication or transcription forks,
replication fork reversal, and protein, RNA, or leading
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strand binding of the hairpin complement. In HeLa/c-
myc:(CTG)n•(CAG)n cells in culture, the rapid and effi-
cient cleavage of hairpins in vivo by sequence- and
structure-specific synthetic zinc finger nucleases, com-
pared to the relatively extended time required before the
appearance of expansions or contractions, raises another
alternative, namely that hairpins are common but short-
lived in vivo, and rarely result in TNR instability unless
DNA replication or repair is perturbed. The efficient
and accurate repair of preformed hairpins in cell
extracts is consistent with this notion.
The instability of (CTG)n•(CAG)n repeats and the fre-

quency of chromosome breakage are increased by

mutations in yeast replisome proteins. These findings
strengthen the link between replication fork instability,
hairpin formation, the intra-S phase checkpoint, and
DNA damage responses. The similar phenotypes of
mutations in yeast replisome proteins and knockdown
of orthologous human proteins suggest that evolutiona-
rily conserved pathways operate to stabilize replication
forks and maximize the integrity of replication.
Not surprisingly, cell cycle and checkpoint pathways

appear to play a role in murine (CTG)n•(CAG)n stability.
An outstanding difference between transgenic mouse sys-
tems and the human in vitro repair systems is the appar-
ent contribution of the MMR proteins to instability in

Figure 2 Predicted modes of ZFN binding. (a) Binding of a ZFNCTG and ZFNCAG heterodimer capable of cleaving heteroduplex DNA. FokI CD,
FokI catalytic domain; ZFPGCT, (GCT)-recognition zinc finger protein; ZFPAGC, (AGC)-recognition zinc finger protein. (b) Predicted modes of ZFNCTG

monomer binding to heteroduplex DNA (upper) or homodimeric ZFNCTG capable of cleaving (CTG) hairpin DNA (lower). (Reprinted from [7] with
permission)
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mice and the absence of their effect on in vitro repair.
One possibility is that the preformation of stable hairpin
substrates for in vitro repair may bypass an in vivo effect
of chromatin structure, DNA metabolism, or MMR
proteins.
Several fundamental questions concerning the

mechanism of (CTG)n•(CAG)n instability remain to be
addressed. For example, do contractions and expansions
occur as consequences of the same process of replica-
tion, replication restart or postreplication repair? Do
contractions and expansions occur in different phases of
the mitotic cycle? Do contractions (or expansions) occur
preferentially on the leading or lagging strand during
replication? Are different pathways involved in the
instability of various length TNRs? Does DNA damage
promote hairpin formation? Which repair mechanisms
are responsible for TNR instability in postmitotic cells?
What is the mechanism of transcription-induced
instability?
The use of yeast and transgenic mouse mutants, and

RNAi to produce human cells and cell extracts deficient
in specific functions promise to give insight into these
questions, and thereby reveal second site genetic modi-
fiers of TNR instability that can be used in prognosis
and therapy.
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